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Abstract

Identification and estimation of network-based peer effects is often limited by lack of data on
network connections. In the absence of such data, we provide new identification results for a
version of the linear-in-means model in which covariance in outcomes across agents is due to
both network effects and latent, unobserved factors. Restrictions on network density and maxi-
mum degree are shown to be sufficient to separately identify both network structure and latent
factors. When there is a single factor, network density can be as high as 1

4 , while maximum de-
gree may be as large as 5

12 of all agents. For estimation, we propose a proximal gradient descent
algorithm that uses L1,1 andL1,2 norms. We perform a number of simulations, showing that the
algorithm performs well in recovering network structure, with predictably better performance
when more time periods are observed. In contrast to existing methods, our results allow for
identification of network structure from covariance in outcomes, allow for latent factors, do not
require exogeneity assumptions or even observation of time-varying covariates, and allow for
identification of the absence of peer effects.

1 Introduction

Recent decades have witnessed a large amount of research investigating network-based peer

effects.1 This broad research agenda is due at least in part to the availability of datasets that contain

rich network data, such as AddHealth (Harris, 2009) and the Diffusion of Microfinance dataset

(Banerjee et al., 2012). Such datasets allow the researcher to observe who one’s peers are, although

∗Corresponding author: alangrif@uw.edu. We thank Jungyoun Kim for superb research assistance. All errors remain
our own.

1Analysis of peer effects through networks is contrasted with the older literature on group-based peer effects, whereby
an individual’s “peers" is defined as all of those within some group, such as a classroom. A rich literature, some
of it randomized, provides substantial causal evidence of classroom-based peer effects (see Epple and Romano, 2011;
Sacerdote, 2011, for review of this large literature)
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often noisily, and similar network data is often assumed to be a necessary input into any study of

peer effects.2

Network data, however, is often unavailable or difficult to collect; in retrospective research,

collecting network data may be impossible. Additionally, even when such data is available, it may

be imperfect for a number of reasons, and noisily-measured network data may lead to predictable

errors in estimation and inference.3 Given these challenges, the implications of partially- or noisily-

observed network data on estimation of model parameters is currently a very active research area

(see Boucher and Houndetoungan, 2019; Chandrasekhar and Lewis, 2011; Griffith, 2021; Thirkettle,

2019).

In this paper, we propose a novel method to recover network structure in panel settings where

network data is completely unavailable. Our model begins with a standard linear-in-means speci-

fication (see Manski, 1993), augmented with unobserved, individual-specific, low-dimensional la-

tent “factors" (see Anderson and Rubin, 1956; Bai, 2009). For purposes of identification, we assume

that the researcher observes the positive-definiteN ×N covariance matrix of outcomes across time.

The main identification challenge lies in separating covariance due to the latent factors from co-

variance due to the unobserved network structure. Similar to Manresa (2016), our model has no

“common parameters": the “parameter" of interest is the structure of the network itself, along with

the latent factor structure.

Our main identification result pairs Turán’s Theorem—a result in extremal graph theory that

relates network density to existence of cliques—with insights from the matrix completion and

matrix decomposition literature. We show that assumptions on the sparsity of the network—in

terms of both average and maximum degree—are sufficient to recover the entire network structure,

even in the presence of latent, unobserved factors. Further, these assumptions are not especially

2Typical analysis of network-based peer effects consist of the following steps. First, gather individual-level data on
outcomes yit and covariates xit, where i indexes individuals and t indexes time. Pair this with data on social links. From
this network data, construct a peer mean of one’s peers’ outcomes and covariates. The third step is to correlate one’s
own outcomes yit with (1) (an average of) the outcomes of one’s neighbors yjt, where j 6= i; (2) one’s own characteristics
xit, and (3) (an average of) the characteristics of one’s neighbors xjt. In the canonical case, this consists of estimating
the parameters of a linear-in-means model a la Manski (1993), while noting that network data facilitates identification in
many cases where group-based interactions may not (see, e.g. Blume et al., 2015; Bramoullé, Djebbari and Fortin, 2009;
DeGiorgi, Pelllizzari and Radaelli, 2010). These analyses may or may not contain group-level fixed effects to control for
correlated effects.

3As an example, network censoring—whereby individuals may list only a small number of friends—leads to attenu-
ation in the reduced-form peer effects (see Griffith, 2021), as well as inconsistent estimates of other features of networks
(Fosdick and Hoff, 2015; Hoff et al., 2013).

2



biting: when there is a single latent factor, we can allow for average density of approximately 1
4

and maximum degree of approximately 5
12 of all possible links. With partial knowledge of the

network structure—such as when agents are known to be in isolated groups—these bounds can be

further relaxed.

Given these identification results, we propose a procedure to jointly estimate the network and

the latent factor structure. We propose an iterative Proximal Gradient Descent algorithm, an “accel-

erated" algorithm that iterates between gradient descent and shrinkage in estimation. Shrinkage is

imposed via mixed L1,1 and L1,2 norms on the estimated network structure. Penalized estimation

via these norms imposes soft-threshold versions of the average and maximum density assump-

tions from our identification results (see Chiong and Moon, 2018).

Through a series of simulation exercises, we show that this procedure performs well in recov-

ering network structure, using networks collected by Banerjee et al. (2012). As expected, these

results show that, for proper values of the penalization parameters, the algorithm performs well

in recovering network structure. We desmonstrate estimation using single villages as well as mul-

tiple villages, where the latter employs covariance in outcomes across villages to aid in identifying

the latent factor structure. We further test the algorithm’s performance as we add more noise to the

data, modeled by observing outcomes across fewer and fewer time periods. As expected, estimates

become much less precise as the number of repeated observations decreases.

Our identification results have four key features that contrast them to methods existing in the

literature. First, our results infer network structure solely from covariance in outcomes, without

the need to observe time-varying covariates. This allows for potentially many more applications,

since covariates available in data are often fixed demographic variables, and “panel" structure of

data is often due to multiple outcomes observed at the same time.4 This also dispenses the need

to make strong assumptions about exogeneity of covariates, in sharp contrast to leading results in

the literature such as de Paula, Rasul and Souza (2020) and Manresa (2016).5 We note however,

that these additional features come at a cost: in contrast to de Paula, Rasul and Souza (2020), we

cannot identify the structure of dense networks.

4As an example of the latter, in the Tennessee STAR data, multiple academic outcomes for each student are observed
in each year in the study. In AddHealth, multiple academic and behavioral outcomes per survey wave are observed but
only one set of baseline covariates.

5While they do not seek to identify network structure itself, Lewbel, Qu and Tang (2021b) require a similar exogeneity
assumption.
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Second, modeling a latent factor structure allows for richer individual-specific heterogeneity

that may not be available in observed data. Third, our method allows for identification of the

absence of peer effects. This is often treated as a knife-edge case of non-identification (see, e.g.

Bramoullé, Djebbari and Fortin, 2009; de Paula, Rasul and Souza, 2020).6 Our results allow us

to identify situations in which there is no covariance in outcomes, and we need not make any

assumptions about combinations of parameters.

Fourth, our method generalizes the graphical lasso estimator proposed in Battaglini et al.

(2021). While Battaglini et al. (2021) only allows for observed common shocks, we consider the

case of a low dimensional unobserved common shock structure. This extension leads to a more

challenging identification problem and to the best of our knowledge, it is not a structure that nested

in any of the existing literature.

Our results here are most closely related to Manresa (2016), de Paula, Rasul and Souza (2020)

and Battaglini et al. (2021), which we have contrasted already.7 Our method is also related to

a set of works that seek to estimate (common) peer effects parameters from either no or limited

data. Lewbel, Qu and Tang (2021b) achieve identification of common parameters by observing

the distribution of correlations of outcomes and covariates. Boucher and Houndetoungan (2019)

achieve identification under the assumption that a consistent estimate of the distribution of the

network is available. Relatedly, Griffith (2021) and Lewbel, Qu and Tang (2021a) analyze consis-

tency/inconsistency of peer effects estimators when network data is partially but not fully ob-

served.8

In seeking to infer network structure, our methods are also related to the broader literature

that seeks to infer network structure from other, more readily-available data, such as those that

use Aggregate Relational Data (see Breza et al., 2020; Alidaee, Auerbach and Leung, 2020). Further,

our use of concepts from matrix decomposition and matrix completion share insights from leading

computer science results.9 Our estimation via penalized mixed norms employs an insight from

6That is, a stated conditions of Propositions 1-5 of Bramoullé, Djebbari and Fortin (2009) and Assumption (A3) of
de Paula, Rasul and Souza (2020) require that the peer effects do not cancel out. Our results, in contrast, allow for
identification of the absence of peer effects

7Miraldo, Propper and Rose (2021) is another example of using panel structure to identify peer effects, but peer
effects in their context have a group rather than network structure, and identification is achieved by observing agents
moving across groups over time.

8Chandrasekhar and Lewis (2011) and Breza et al. (2020) study related issues in estimating diffusion models rather
than peer effects.

9Our decomposition lemma (Lemma 1) is related to notions of “rank-sparsity incoherence" as defined in, e.g., Chan-
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Chiong and Moon (2018), which advocates use of the L1,2 norm as a means of imposing maximum

degree in graphical models. Identification via second moments and variance restrictions relates

our work to a set of results that infer peer effects via variance restrictions including theoretical

(Graham, 2008; Rose, 2017) and applied (Lyle, 2009) works.

This paper is organized as follows. Section 2 introduces the model. Our main identification

results are in Section 3, with extensions and a special case in Section 4. We introduce our estimation

algorithm and discuss its relation to our identification results in Section 5. We present simlated

estimation results in Section 6, with sensitivity discussed in Section 7. Section 8 concludes.

2 Model Set-up

2.1 Base

Our model is set up as Equation (1), is a simple generalization of the standard linear-in-means

model (Manski, 1993) that allows for heterogeneity among the peer effects.

yit = ∑
j 6=i

γijyjt + δxit + ∑
j 6=i

γijxjt + εit (1)

Individuals are indexed by i and “time" is indexed by t. yit is some outcome for individual i at

time t, while xit is some covariate for this same agent. In the taxonomy of Manski (1993), the term

∑j 6=i γijyjt identifies the endogenous peer effect, ∑j 6=i γijxjt the exogenous peer effect, and correlation

among εit identifies correlated effects.

To simplify notation, assume that xt = 0 uniformly.10 Rewrite Equation (1) in matrix form,

yielding Equation (2).

yt = Γyt + εt (2)

In this equation, Γ is an adjacency matrix, or “sociomatrix" in the terminology of Blume et al. (2015).

drasekaran et al. (2011). The matrix completion strategy is related to results in, for example, Candès and Recht (2009),
except our result requires deterministic rather than high-probability completability.

10This assumption may seem strong. However, if the analysis is performed after differencing out individual-level
means in a panel setting, then this is equivalent to assuming that xit is fixed across time for each agent i. In other words,
xit being a time-invariant characteristic is sufficient for this assumption.
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Assumption 1. The following conditions are imposed:

[1] Γ(i,i) = 0 ∀ i

[2] ρ(Γ) < 1, where ρ() is the spectral radius of Γ

[3] E[εtε′t] is bounded and positive definite

In all versions of the model, we restrict the DGP by the restrictions in Assumption 1. Part [1]

is standard in the literature and simply rules out self-reflection. Part [2] is a stability condition,

versions of which are standard in the literature. We need not impose any row-sum normalization,

in contrast to, for example, Bramoullé, Djebbari and Fortin (2009) and de Paula, Rasul and Souza

(2020).11 Taken together, [2] and [3] imply that yt can be rewritten as Equation (3).

yt = (I− Γ)−1εt (3)

2.2 Latent Factor Structure

While the linear-in-means model has been used extensively by applied researchers to study

peer effects, common shocks remain a concern for those studies. For example, even in the case

when individual fixed effects are differenced out in equation (1), a latent variable may still generate

correlation across εit (for any given t) and thus introduce bias in the peer effect estimator. In Manski

(1993), such dependence is explicitly modeled by assuming the dependence structure is the same

as the observed network. In de Paula, Rasul and Souza (2020), common shocks are modeled as

a common time-varying scalar that can be differenced out from the local average outcomes of

neighbors.

We take a different approach. In order to allow for covariance among unobserved εit, we model

a latent factor structure. That is, εit = ηift + uit, where ηi is 1×R, ft is R× 1. In matrix notation,

εt = ηft + ut (4)

Formally, the latent factor structure is defined in Assumption 2. These assumptions are standard in

the literature going back as far as Anderson and Rubin (1956), amounting to a normalization of ft
11In our model, a row-sum normalization would impose that ∑j 6=i γij = k for some k ∈ (0, 1).
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(and in turn ηi). We maintain Assumption 2 throughout.12 Condition [5] is simply a normalization

that sets the sign of each ηir.

Assumption 2. For each t, εt = ηft + ut, where

[1] η′η is diagonal with decreasing entries along the diagonal

[2] E[ηut
′] = 0 for all t

[3] E[ftf ′t |ut] = IR

[4] E[utut
′] is diagonal

[5] η11 ≥ 0

2.3 What is Observed

As stated in Assumption 3, we assume that the covariance of outcomes yt across all agents

i = 1, ...,N , is observed. Further, this covariance matrix E[ytyt
′] is positive definite, and thus can

be inverted.

Assumption 3. E[ytyt
′] is observed and is positive definite.

Assumptions 1 - 3 guarantee observation of both sides of Equation (5).

E[ytyt
′] = (I− Γ)−1(ηη′ + U)(I− Γ′)−1 (5)

Due to Assumption 3, both sides of Equation (5) are positive definite. Therefore, the precision

matrix Σy = (E[ytyt
′])−1 exists and is observed/identified. It is written in Equation (6).

Σy = (I− Γ′)(ηη′ + U)−1(I− Γ) (6)

The identification problem thus lies in separating Γ, η, and U in the precision matrix. The Woodbu-

rery Inverse Formula allows us to restate Equation (6) as the sum of two other matrices as shown

in Equation (7).

Σy = (I− Γ′)U−1(I− Γ)− (I− Γ′)U−1η(IR + ηU−1η′)−1η′U−1(I− Γ) (7)

12Special cases that assume away the factor structure effectively add the assumption η = 0.

7



2.4 Unovserved Factors: A Simple Example

To highlight the importance of accounting for unobserved factors, suppose that we want to

infer network structure through a penalized procedure as is standard (see Manresa, 2016; de Paula,

Rasul and Souza, 2020). In the absence of any network effects (Γ = 0) and assuming R = 1 and

U = σuI, the precision matrix is given in Equation (8).

Σy =
1
σu

I− 1
σu(σu + η′η)

ηη′ (8)

This implies that, for all i, j 6= i (off-diagonal terms), element (i, j) of Σy is given by− 1
σu(σu+η′η)

ηiηj .

If we naively inferred network links from Σy without considering the factor structure, we would

infer “links" wherever ηiηj is large in magnitude. In other words, we would infer links as existing

between agents holding the largest latent factors. Additionally, we would inaccurately infer high

“degree" for agents who have high ηi in magnitude.

3 Identification

Here, we derive our main identification result. First, we define terms, including what we mean

by identification as well as terms from graph theory.

3.1 Definitions

3.1.1 Identification

As stated in Assumption 3, in all cases we assume that the precision/covariance matrix is

observed. By “identification," we mean a unique mapping from these moments to parameters of

the model. This is the notion of (global) identification as defined in Rothenberg (1971), among

others.13 That is, given a set of observed moments Ψ, a set of parameters θ is identified if there is a

unique mapping from Ψ to θ, given the assumed data-generating process.

Definition 1. A parameter θ is identified if, for all possible observed moments Ψ(θ), there

exists a unique “to one" mapping from Ψ(θ) to θ.

13For a fuller discussion of this definitian its relation to other notions of point identification, see Lewbel (2019).
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Identification is defined in Definition 1. In our setting, Assumption 3 states that we observe

the positive-definite covariance matrix E[yty′t] and therefore its inverse Σy, the precision matrix as

given in Equation (7). Accordingly, we are interested in conditions under which there is a mapping

from each possible Σy to unique parameters (Γ, η).

We further define a notion of generic identification in Definition 2. Many of our results hold

generically but not globally, since in knife-edge cases combinations of parameters may preclude

identification.14

Definition 2. A statement holds generically for some set B if the set B′ ⊂ B in which it does

not hold has Lebesgue measure zero.

3.1.2 Network/Graph Theory Definitions

By assumption, the observed “reduced-form" parameter Σy is a symmetric, positive-definite

matrix. Accordingly, it encodes (at most) N(N+1)
2 restrictions. Therefore, simply counting the num-

ber of parameters suggests that we cannot identify an arbitrarily dense Γ, which might include as

many as N(N − 1) nonzero entries. Further, η contains an additional N ×R parameters that must

be identified. Therefore, without additional restrictions, the model contains N(N + R − 1) >>
N(N+1)

2 parameters.

To set up the discussion of identification conditions, we define some notions from graph theory.

These definitions are standard in the graph theory literature (see, e.g. Diestel, 2005; Jackson, 2008).

First, we note that, in our terminology, a network is completely characterized by its adjacency

matrix G, which may be weighted and/or directed. One such G of interest is the Γ that we seek to

identify. By convention, G(i,i) = 0 for all i (there are no self-links).

Definition 3. Given an adjacency matrix G,

[1] V (G) is the vertex set of G

[2] E(G) is the edge set of G. That is, (i, j) ∈ E(G) if G(i,j) 6= 0, with its complement

defined as E(G).

Defintion 3 defines vertex set and edge sets. For any graph/network G, the vertex set is the set

14Generic identification is necessary but not sufficient for global identification. This is the same definition of generic
identification given in Lewbel (2019) Section 7.2.
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of all agents, while the edge set is the set of all links that exist. Since links may be weighted and

directed, the edge set is the set of nonzero links or, equivalently, the set of pairs (i, j) for which

G(i,j) 6= 0.

Definition 4. For an adjacency matrix G,

[1] |V (G)| is the order of G (the number of agents)

[2] ‖E(G)‖ is the size of G (the number of nonzero elements in G)

[3] ‖E(G)‖
|V (G)|(|V (G)|−1) is the density of G

Next, Definition 4 defines order, size, and density. The order of G is the number of agents,

while the size is the number of links, where a “link" is defined to exist whenever G(i,j) 6= 0. The

network’s density is the number of links (the size) compared to the number of links that could

exist, which is |V (G)|(|V (G)| − 1).

Definition 5. For a network G and V ′ ⊂ V (G), G′ is the |V ′| × |V ′| induced subnetwork on

V ′. That is, G′ contains all (and only) links in G among agents in V ′.

Our identification results impose restrictions on density of networks and subnetworks. Ac-

cordingly, Definition 5 defines an induced subnetwork, which consists of a subset of agents and

the links among those agents. That is, an induced subnetwork is completely characterized by G

restricted to rows and columns corresponding to agents in V ′ ⊂ V (G). The order, size, and density

of G′ are defined analogously to those of the full network in Definition 4.

Finally, we define degree for each agent in V (G) as well as maximum and minimum degree.

For each agent i, degree is simply the number of nonzero elements in row i of the adjacency matrix.

δ(G) and ∆(G) are the minimum and maximum, respectively, across all agents i.

Definition 6. For a network G,

[1] For any agent i ∈ V (G), di(G) = ‖Gi‖ is the degree of i

[2] δ(G) = mini di(G) is the minimum degree of G

[3] ∆(G) = maxi di(G) is the maximum degree of G
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3.2 Matrix Decomposition Lemma

To simplify notation and clarify the identification problem, we first define Z, a N ×R matrix,

in Equation (9). To start,

ZZ′ = (I− Γ′)U−1η(IR + η′U−1η)−1η′U−1(I− Γ),

where Z = (I− Γ′)U−1η(IR + η′U−1η)−
1
2 (9)

Since (IR + ηU−1η′)−1 is a symmetric, positive-definite matrix, (IR + ηU−1η′)−
1
2 is guaranteed to

exist. Therefore, Z exists, in terms of Γ, η, and U.15 With ZZ′ thus defined, we rewrite Equation (7)

as in Equation (10).

Σy = (I− Γ′)U−1(I− Γ)− ZZ′ (10)

Since Σy is assumed to be observed/identified, identification of ZZ′ requires separating the two

terms on the right-hand side of Equation (10). Separating these two matrices is fundamentally a

matrix decomposition problem.

Lemma 1. Given Assumptions 1-3, identification of ZZ′⇒ identification of Γ, U, and η.

Proof. See Appendix.

Clearly, identification of ZZ′ immediately implies identification of (I− Γ′)U−1(I− Γ). Lemma 1

gives a stronger result, however: identification of ZZ′ is sufficient for identification of all parameters

of the model, not just the composite parameter (I− Γ′)U−1(I− Γ). The intuition for Lemma 1 is

straightforward: since U−1 is diagonal and all diagonal elements of Γ are zero, U is identified by

the diagonal elements of (I− Γ′)U−
1
2 . Once U is known, we we can deduce Γ from (I− Γ′)U−

1
2 .

Once U and Γ are known, η can be recovered from Z.

Lemma 1 states that identification of ZZ′ is sufficient to identify all parameters of the model.

In turn, our main results give sufficient conditions for the logically prior step of identifying ZZ′

which, together with Lemma 1 state conditions for identification of all parameters in Theorem 1.

15Defining M = (IR + ηU−1η′)−
1
2 , M(r,r) = (1 + ∑Ni=1

η2
ir

u2
i
)−

1
2 for all r = 1, ...,R.
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Our strategy for decomposing the precision matrix Σyt into its component parts as shown in

Equation (10) is related to the notion of “rank-sparsity incoherence" found in the computer sci-

ence literature (see Agarwal, Negahban and Wainwright, 2012; Chandrasekaran et al., 2011; Hsu,

Kakade and Zhang, 2011). Clearly, a single matrix cannot be uniquely decomposed into two addi-

tive matrices without additional conditions. The basic insight is that if one of the component parts

is sufficiently sparse while the other is of low rank, then there can be a unique decomposition.

In our context, sparsity in the network—of a particular type—implies sparsity of the first term

(I− Γ′)U−1(I− Γ), while ZZ′ has rank R at most, where R is the number of factors in the factor

structure η.

3.3 Identification as Matrix Completion

3.3.1 Matrix Completion Set-up

Lemma 1 states the identification problem as one of matrix decomposition. Here, we show that

this matrix decomposition problem is in essence an exercise in matrix completion, where the sparsity

structure of the network provides for partial observability of ZZ′.

To fix ideas, consider ZZ′∗, a partially-observed version of ZZ′. For example, we might observe

ZZ′∗ =



∗ z′1z2 z′1z3 ...

z′1z2 ∗ ∗ ...

z′1z3 ∗ ...

...


(11)

where ∗ indicates missing entries. In the jargon of, for example, Király and Tomioka (2012), there

exists some binary matrix M that defines a “mask" on ZZ′. In this example, M(1,2) = M(1,3) = 1

while M(2,3) = 0 as are all diagonal elements of M.

In this context, identification of ZZ′ requires conditions to ensure observation of a sufficient

number and placement of unmasked (observed) elements in ZZ′∗. Given identification of ZZ′(i,j)

for some (i, j), identification of the rest of the entries of ZZ′ is a maxtrix completion problem.

There is a large literature in computer science that deals with the problem of low-rank matrix

completion. Early examples are Candès and Recht (2009) and Candès and Tao (2010). However,
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these results are not directly applicable since they generally formulate the problem in terms of

random missing entries, and generally derive results for unique completability “with high probail-

ity." In contrast, here we are concerned with non-random missingness patterns, and identification

requires deterministic unique completability. To this end, a few papers have investigated the prob-

lem of deterministic matrix completion (see, e.g. Bhojanapalli and Jain, 2014; Bishop and Yu, 2014;

Király and Tomioka, 2012; Singer and Cucuringu, 2010). Our results share insights from these

works, but none are directly on point for the problem at hand.

3.3.2 Constructive Results

Before proceeding to our main result, we state a set of lemmas. These results allow us to fill

in certain missing elements in ZZ′∗, which in turn allows for iterative construction of ZZ′ from

observed subsets of entries, corresponding to induced subgraphs of the adjacency matrix.

Lemma 2. If M is a matrix of at most rank R, then for any R+ 1×R+ 1 sub-matrix, identifi-

cation of all but one elements implies identification of the final element, generically.

Proof. See Appendix.

First, Lemma 2 says that, for any matrix that has rank less than R+ 1, we can infer the final

entry of any all-but-one-element identified matrix of size R+ 1. This result is similar to that given

in Proposition 2.12 of Király and Tomioka (2012). WhenR = 1, this implies that for any sub-matrix

as in Expression (12), identification of any three elements is sufficient to identify the fourth.

ZZ′(i,j) ZZ′(i,k)

ZZ′(l,j) ∗

 (12)

Identification of the missing elements follows from the fact that this matrix must be rank-deficient,

and thus its determinant must be zero. Therefore, ZZ′(l,k) =
ZZ′(i,k)ZZ′(l,j)

ZZ′(i,j)
, noting that the genericity

condition ensures that ZZ′(i,j) 6= 0 except in a knife-edge case. When R = 2, Lemma 2 provides

identification of single missing elements in any 3× 3 sub-matrix, and analogously for larger R.

Lemma 3. If there exist V ′1,V ′2 ⊂ V such that

13



[1] |V ′1|, |V ′2| ≥ R

[2] V ′1 ∩ V ′2 = ∅

[3] ZZ′(i,j) is identifed for all i, j ∈ V ′1 , ZZ′(k,l) is identifed for all k, l ∈ V ′2

then ZZ′(i,k) is identified for all i, k ∈ V ′1 ∪ V ′2 .

Next, Lemma 3 provides for filling in off-diagonal blocks in ZZ′ when sufficiently large blocks

along the diagonal have been identified.That is, suppose that ZZ′11 and ZZ′22 are identified in the

following matrix, and each is square and at least R×R.

ZZ′11 ZZ′12

ZZ′′12 ZZ′22

 (13)

Lemma 3 implies that ZZ′12 (and also ZZ′′12) are identified. When R = 1, then this provides

that identifcation of elements ZZ′(i,i) and ZZ′(j,j) are sufficient to identify ZZ′(i,j) (and ZZ′(j,i)).

More generally, Lemma 3 says that identification of disjoint principal sub-matrices immediately

implies identification of the off-diagonal blocks. Accordingly, Lemma 3 states that identification of

sufficiently many principal sub-matrices, each of sufficient size, can identify the entire matrix.16

3.4 Conditions on Observability

Lemmas 2 and 3 allow for adding to known elements of partially-observed ZZ′∗, but these

results require that at least some elements are already observed. Thus, their usefulness requires

conditions under which some entries of ZZ′ are observed. Here, we state conditions that relate

sparsity in the network E(G) ∪E(G′) ∪E(G′G) to observability of entries of ZZ′.

Lemma 4. For any adjacency matrix G and diagonal D, for any j 6= i, (i, j) /∈ E(G)∪E(G′)∪

E(G′G)⇒ element (i, j) of (I−G′)D(I−G) is zero.

Proof. See Appendix.

First, Lemma 4 relates observability of elements of ZZ′ to the existence or absence of network

links. We note that, in the linear-in-means framework of, e.g., Manski (1993), G(i,j) 6= 0 implies

16This result is analogous to the strategy in Bishop and Yu (2014).
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that agent j influences agent i. Therefore, E(G′G) defines the set of common influences: (i, j) ∈

E(G′G) whenever i and j influence a common third party k.17 Therefore, Lemma 4 says that

(I−G′)U−1(I−G) is zero whenever i and j neither directly influence each other nor commonly

influence a third agent.

The importance of Lemma 4 is that, whenever (i, j) is not in the union of the networks in

Lemma 4, then element (i, j) of (I −G′)U−1(I −G) is zero. In turn, via Equation (10), element

(i, j) of ZZ′ is observed. That is, Lemma 4 gives a sufficient condition for observation of individual

elements of ZZ′. Together with sparsity conditions, Lemma 4 guarantees a number of elements of

ZZ′ are observed, without identifying which particular elements are known.

Lemma 5. For any graph G1 and associated vertex set V1, if ‖E(G1)∪E(G1
′)∪E(G1

′G1)‖ <
|V1|

2 ( |V1|
R − 2), then there exists V ′1 ⊂ V1 such that

[1] |V ′1| ≥ 2R+ 1

[2] ZZ′(i,j) is identified for all i, j ∈ V ′1

[3] Each agent in V ′1 has at most R− 1 links to agents in V ′1 in the complement of the

edge set edge set E(G1) ∪E(G1
′) ∪E(G1

′G1) , (defined as E(G1) ∪E(G1
′) ∪E(G1

′G1))

Proof. See Appendix.

Second, we use a well-known result from extremal graph theory to give conditions under

which cliques—defined as maximally-connected induced subgraphs—must exist in a graph. Lemma

5 employs Turán’s Theorem, which relates the density of any graph (or subgraph) to the existence

of cliques of a certain size (see, e.g., Diestel, 2005, Ch. 7.1), where a clique is defined as a complete

induced sub-network. In particular, Lemma 5 uses Turán’s Theorem to give sufficient conditions

for the existence of cliques of at least size 2R+ 1, where R is the number of latent factors in the

model.

This result is extremely powerful in our setting. For all agents in the clique of size 2R+ 1, it

immediately implies identification of the off-diagonal elements of ZZ′ for all agents in the induced

subgraph. In turn, application of Lemma 2 then provides for identification of the missing diagonal

elements. Therefore, given sufficient density, we identify all elements in the block.
17Note that this is a one-way implication: no common influence implies element (i, j) of (I−G′)D(I−G) is zero,

but the reverse may not hold if, for example, multiple common influences exactly cancel each other.
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3.5 Main Result

Theorem 1 gives our main identification result, of which Lemmas 1 - 5 are intermediate steps.

Density conditions together with Lemmas 4 and 5 provide that some elements of ZZ′ are necessar-

ily identified. From this starting point, Lemmas 2 and 3 allow iterative construction of a unique,

low-rank ZZ′. Finally, Lemma 1 states that this unique ZZ′ implies identification of all other model

parameters, including both the network structure Γ and the latent factors η.

To simplify notation somewhat, before stating Theorem 1, define m = 1− 1
2R , and note that m

is strictly increasing in R. Theorem 1 says that conditions on the average degree (network density)

and maximum degree of the network E(Γ) ∪E(Γ′) ∪E(Γ′Γ) are sufficient for identification of all

parameters of the model. That is, as long as average density and maximum degree of the union of

the direct and common-influence networks are not too large, there exists a unique mapping from

the precision matrix Σyt , which is assumed to be observed, to the underlying graph and factor

structure.

Theorem 1. Given Assumptions 1 - 3, if the following conditions hold

[1] |E(Γ) ∪E(Γ′) ∪E(Γ′Γ)| < N(NR−2)
4 (density)

[2] ∆(E(Γ) ∪E(Γ′) ∪E(Γ′Γ) ≤ N(1−m)+P1(R)m−R
2 (max degree),

(where P1(R) =
1+2mN+2(R−1)+((1+2mN+2(R−1))2−8N(m+1)(R−1))

1
2

2(1+m)
)

then (Γ, η, U) is identified.

Proof. See Appendix.

The full proof of Theorem 1 is technical and in the appendix, but the intuition is as follows.

First, assume that there exist Γ(1), Γ(2) as well as η(1), η(2). Define an edge set H as the union of the

direct influence and common-influence links under the two networks. In other words,

H = E(Γ(1)) ∪E(Γ(1)′) ∪E(Γ(1)′Γ(1)) ∪E(Γ(2)) ∪E(Γ(2)′) ∪E(Γ(2)′Γ(2)) (14)

The maximum density conditions imply that this network has at most N(NR−2)
2 links. Therefore, by

Lemma 5, its complementH must contain a clique of size 2R+ 1. By Lemma 4, ZZ′(i,j) is identified
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for all (i, j) in this clique. Define the set of agents in this clique as V ′ ⊂ V . Lemma 3 says that we

can add agents who are connected to at least R agents in this clique through Lemma 3.

The rest of the proof relies upon showing that this set V ′ ⊂ V must eventually include all

agents in V , or else a contradiction is implied. When the number of links in the set is relatively

small (but still at least 2R+ 1), then the maximum number of possible links inH is smaller than the

minimum density implied by the maximum density conditions on H . When the number of agents

in V ′ is relatively large, then agents in V ′ cannot have enough links to meet the minimum degree

requirement on average, where this minimum degree requirement is implied by the maximum

degree condition on H .

3.6 Discussion Of Identification

Theorem 1 requires sparsity conditions, even in the limit. That is, even under the assumption

that the covariance matrix is perfectly observed, separating the network and factor structures still

requires restrictions on the network structure. This is in contrast to de Paula, Rasul and Souza

(2020), who can identify arbitrarily dense network structures, but they do not allow for a factor

structure. We note that when we assume there is no factor structure, we can dispense with the

sparsity conditions, as shown below in Proposition 1.

We note that the two conditions are dependent on R, the number of factors that need identi-

fying. The density condition is clearly decreasing with R: when R = 1, density can be as high as

approximately 1
4 ; when R = 2, this drops to 1

8 .

The maximum degree condition is needed to ensure that we observe a sufficient number of

entries in each row/column. We note that this restriction may not be particularly binding in appli-

cations: for R = 1, the max degree condition is 5N−4
12 . Accordingly, in this case, we can allow for

agents to be connected to approximately 5
12 of other agents as long as the average degree condition

still holds.
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4 Extensions and Special Cases

4.1 Diagonal Covariance

Here, we consider the case that is closest to those existing in the literature thus far (see Manresa,

2016; de Paula, Rasul and Souza, 2020), which do not have a latent factor structure. The absence of

a latent factor structure implies a restriction on the covariance matrix V. Alternatively, this can be

thought of as a limiting case of Theorem 1 when R = 0.

Proposition 1. Given Assumptions 1 - 3, if V is diagonal (equivalently, η = 0), then Γ, U are

identified.

Proof. This result is a straightforward application of Lemma 1. That is, the assumption that η = 0

implies that ZZ′ = 0. Therefore ZZ′ is identified. Lemma 1 immediately provides identification of

Γ and U.

This result states that we can recover Γ—even if it is arbitrarily dense—if there are no un-

observed factors. This follows from the fact that, when η = 0 uniformly, any covariance across yt

must be due to the network structure. This result is analogous to de Paula, Rasul and Souza (2020),

but we note that we do not identify the other features of the model that they are interested in, and

we do not require a row-sum normalization.

4.2 Partial Knowledge of Network Structure

If we have a priori knowledge of which network links cannot exist, then we can state weaker

assumptions for identification. First, we define a restricted set in Definition 7. This formalizes the

notion that there may be some pairs of agents that cannot be linked. This may be due to, for

example, social or geographic distance, such as cases where agents are known to be in different

villages or schools.

Definition 7. A Restricted Set J is a set of ordered pairs such that, for all (i, j) /∈ J , (i, j) /∈

E(Γ) ∪E(Γ′) ∪E(Γ′Γ).

For purposes of identification, a restricted set constrains the set of allowable links. That is,

whenever (i, j) /∈ J , agents i, j 6= i cannot be connected in E(Γ) ∪ E(Γ′) ∪ E(Γ′Γ) .18 Due to

18In the case where we impose no restrictions, (i, j) ∈ J for all i, j 6= i.

18



Lemma 4, for all (i, j) /∈ J , we always observe ZZ′(i,j). With a sufficient number and placement of

links that are known not to exist, we can uniquely identify ZZ′, regardless of the structure of the

network within the restricted set.

With the restricted set thus defined, Theorem 2 states an important identification result. Its

proof is in the Appendix, but the intuition is straightforward. The two hypotheses of Theorem 2

imply that each agent belongs to a clique in J (the complement of the restricted set), of size at least

2R+ 1. From this, we can use similar arguments to those used in Lemma 5 to identify ZZ′(i,j) for all

i, j in that clique, including when i = j. Lemma 3 then provides for identification of all elements

involving agents in different cliques, and thus ZZ′ is identified. Finally, Lemma 1 provides for

identification of Γ and η.

Theorem 2. Suppose that there exists as restricted set J such that, for each i ∈ V , there exists

some V ′ ⊂ V such that i ∈ V ′ and

[1] |V ′| ≥ 2R+ 1

[2] (i, j) ∈ J ∀ i, j 6= i ∈ V ′

Then, (Γ, η) are identified.

Theorem 2 is particularly useful when we want to simultaneously identify networks (Γ) and

unobserved factors (η) among agents across many disjoint groups, such as villages or schools. If

the set of agents belongs to at least 2R+ 1 groups that we know have no connections across groups,

then Theorem 2 states that Γ is identified, regardless of network density witthin groups. Intuitively,

we infer η from the cross-group covariances in outcomes across time, since we know these agents

have no network connections. Conditional on η, any remaining covariance among agents must be

due to the network structure, which gives identification of Γ.

Two notes bear mentioning. First, with knowledge of which links may not exist, we can identify

denser networks. Assuming R = 1 and we observe three equally-sized groups, then network

density can be approximately 1
3 , in contrast to max density of approximately 1

4 as required by

Theorem 1. If R = 2 and we observe five equally-sized groups, then network density can be as

large as approximately 1
5 , in contrast to approximately 1

8 as required by Theorem 1.

Second, Theorem 2 provides a lower bound on the number of disjoint groups that are sufficient

for identification in the absence of density restrictions. Regardless of the within-group network
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structure, 2R+ 1 disjoint groups are sufficient to identify arbitrarily dense within-group networks.

That is, if R = 1, then three groups are sufficient; if R = 2, then five are sufficient.

5 Estimation

We note here that, as in de Paula, Rasul and Souza (2020), our identification results do not

depend on any particular estimator, and we make no claims that the algorithm we propose is

“optimal." To show the algorithm’s practicality, we provide simulations in Section 6.

5.1 Ideal Problem

Our identification results provide that, for a given R, given the empirical covariance S =

E[yty′t], there exists a unique solution to the following minimization problem.

min
Γ,Z
‖S−1 − (I− Γ′)U−1(I− Γ) + ZZ′‖F

s.t. ‖(I− Γ′)(I− Γ)‖i0 <
N(NR − 2)

4 ∀ i

‖(I− Γ′)(I− Γ)‖0 ≤
5N − 4

12 (15)

where ‖‖0 is the L0 norm of the entire matrix, and ‖‖i0 is the L0 norm for each row.

Theorem 1 provides conditions that ensure that this optimization problem has a unique solu-

tion. However, in general this problem is non-convex due to the L0 norm constraints. Accordingly,

we implement a convex relaxation that imposes soft-threshold version of the two constraints. As

defined in Chiong and Moon (2018), these constraints map naturally to L1,1 and L1,2 norms respec-

tively, given by

‖Γ‖1,1 = ∑
i

∑
j

|Γij |, ‖Γ‖1,2 =

(
∑
i

(∑
j

|Γij |)2

) 1
2

(16)

That is, ‖Γ‖1,1 penalizes network density, while ‖Γ‖1,2 penalizes high-degree agents.

In principle, we could estimate a soft-threshold version of the optimization problem in (15)
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above. This would take the form of Criterion (17).

min
Γ,Z
‖Σy − (I− Γ′)U−1(I− Γ) + ZZ′‖F + λ1,1‖Γ‖1,1 + λ1,2‖Γ‖21,2 (17)

where λ1,1,λ1,2 > 0. However, the Frobenius norm in the criterion does not admit simple calcula-

tion and may be non-convex.

5.2 Graphical Lasso Algorithms

To simplify computation, we make parametric assumptions on unobserved variables. This

leads to an estimation criterion derived from a Gaussian likelihood function.

Assumption 4. For all t,

ut

ft

 ∼ N
0,

INσ2 0

0 IR




First, Assumption 4 assumes both homoskedasticity across agents and that all random vari-

ables at time t follow a Guassian distribution.19 Independence (0’s off the diagonal) is implied by

Assumption 2. Note that we make no assumption on the distribution of η, as it is a parameter of

the model. Given Assumption 4, it follows that

yt ∼ N
(
0, (I− Γ)−1(Iσ2 + ηη′)(I− Γ′)−1) (18)

We use known results to write the likelihood of the sample covariance S = 1
T ∑t ytyt

′.20 Up to

a constant, the likelihood of the precision matrix is

L(S; Γ,σ2, η) = log(|(I− Γ′)(Iσ2 + ηη′)−1(I− Γ)|)− tr(S(I− Γ′)(Iσ2 + ηη′)−1(I− Γ)) (19)

where |.| defines the determinant function and tr() defines the matrix trace. To simplify, note that

log(|(I− Γ′)(Iσ2 + ηη′)−1(I− Γ)|) = 2 log(|(I− Γ)|)− log(|(Iσ2 + ηη′)|) (20)

= 2 log(|(I− Γ)|)− log(|IRσ
2 + η′η|)− (N −R) log σ2 (21)

19Note that this is homoskedasticity on the non-factor part of the error term uit. The factor structure will necessarily
imply heteroskedasticity in the composite error term εit = η′ift + uit.

20Note that this assumes that yt has been demeaned by agent first. That is, if y∗t is raw data for t, yt = y∗t −∑Ts=1 y∗s
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where the last step employs the Matrix Determinant Lemma. Next, since the trace is a linear

operator, we can apply the Woodbury Inverse Formula, which implies

tr(S(I− Γ′)(Iσ2 + ηη′)−1(I− Γ)) =
1
σ2
(
tr(S(I− Γ′)(I− Γ))− tr(S(I− Γ′)η(IRσ

2 + η′η)−1η′(I− Γ))
)

(22)

Substituting Equations (21) and (22) into (19) thus yields the following likelihood function.

L(S; Γ,σ2, η) = 2 log(|(I− Γ)|)− log(|IRσ
2 + η′η|)− (N −R) log σ2

+
1
σ2 tr(S(I− Γ′)η(IRσ

2 + η′η)−1η′(I− Γ))− 1
σ2 tr(S(I− Γ′)(I− Γ)) (23)

In principle, we could directly maximize the likelihood as given in Equation (23). However, this

would estimate an arbitrarily dense Γ and, without imposing sparsity, we cannot be sure that there

would be a unique solution in Γ and η. We impose sparsity by minimizing a penalized version of

the negative likelihood function, with penalties in terms of the L1,1 and L1,2 norms of Γ. That is,

we seek to solve the problem given in Criterion (24).

min
Γ,σ,η

(
−L(S; Γ,σ2, η) + λ1,1‖Γ‖1,1 + λ1,2‖Γ‖21,2

)
(24)

where L(S; Γ,σ2, η) is defined in Equation (23).

Algorithm 1. (Latent Graphical LASSO with Mixed Norms)

Set-up

Data: S = 1
T ∑T

t=1 yty′t, an N ×N matrix

Tuning Parameters: λ1,1,λ1,2 > 0, R ∈ {1, 2, ..., },

Initialization: η̂(0) = 0N×r, Γ̂(0) = 0N×N , σ̂(0) = 1, κσ,κΓ large

Step 1: Estimate (Γ̂, η̃, σ̂2) by minimizing Criterion:

(Γ̂, η̃, σ̂) = arg max
Γ,η,σ

(
−L(Γ,σ2, η) + +λ1,1‖Γ‖1,1 + λ1,2‖Γ‖21,2

)
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Step 2: Given η̃, define η̂:

(a) Eη = η̃η̃′

(b) η̂ = VRΛ
1
2
R, where

Eη = VΛV′, the diagonal decomposition of E

VR = first R columns of V

ΛR = first R rows/columns of Λ, where Λ(i,i) ≥ Λ(i+1,i+1)

We propose Algorithm 1 to estimate the model parameters. The algorithm has two steps. First,

Step 1 minimizes Criterion (24). Conditional on the minimand at Step 1, Step 2 “rotates" η̃ so that

the estimated η̂ meets the assumptions for the latent factor structure in Assumption 2; essentially,

Step 2 adjusts estimated η̃ so that the factors are mutually orthogonal and in order of decreasing

variance. When R = 1, then Step 2 is unnecessary, since Assumption 2 is necessarily satisfied.

We propose the optimization in Step 1 be performed using an iterative proximal gradient de-

scent method. That is, we iterate between two steps: (1) a step in the direction of steepest gradient,

and (2) shrinkage of parameters via a proximity projection. These two steps, including closed

forms for the gradient and proximity function, are described in detail in Appendix B.

Solving non-differentiable convex optimization with proximal gradient descent can be traced

back to von Neumann (1951). The fundamental idea of the method is to replace the differential

part of the target function with a quadratic approximation so that an analytic solution for the min-

imization problem can be generated. As a gradient decent algorithm, it shares all the advantages

of Newton’s methods where backtracking line search can be used to determine the step size and it

is parallelizable when computing gradients. This method has received a great amount of attention

recently as an “accelerated" method of penalized estimation (see Bien, Taylor and Tibshirani, 2013;

Boyd et al., 2010; Cevher, Becker and Schmidt, 2014; Tibshirani, 2014).

Finally, we note that Algorithm 1 is easily adaptable to situations in which the researcher

has partial knowledge of the network structure, in the form of a restricted set as discussed for

identification in Theorem 2. If, for example, the network is known to be block diagonal, where

each “block" represents a school, village, etc., we can run the algorithm under the restriction that
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Γ(i,j) = 0 whenever we know that agents i, j cannot be linked, such as if they are in different

villages.21

5.3 Choice of Tuning Parameters

Estimation of Criterion (24) requires a choice of tuning parameters λ1,1 and λ1,2. λ1,1 pe-

nalizes network density, while λ1,2 penalizes degree per agent. Clearly, detected network den-

sity is decreasing in both parameters: in the limiting cases, the algorithm returns a full network

(λ1,1 = λ1,2 = 0) or an empty one (λ1,1, λ1,2 both large).

In our results in Sections 6 and 7, we present results across a grid of values for the tuning

parameters. As expected, the detected networks become more sparse as these parameters become

larger. Accordingly, the choice of tuning parameters works on the interplay between finding “too

many" links (many false positives) or “too few" links (many false negatives).

In empirical applications, care should be taken in choosing these tuning parameters. In princi-

ple, k-fold cross validation allows for choosing among a range of tuning parameters, while target-

ing some out-of-sample moment such as the empirical covariance/precision, likelihood, or even

possibly network density.

6 Simulations on Diffusion of Microfinance Networks

6.1 DGP

In order to simulate peer effects in networks that resemble “real world" networks, we employ

networks from the widely-used Diffusion of Microfinance dataset (see Banerjee et al., 2012). That

is, we take the networks we see there as given. In our simulations, we use a subset of their villages

and various network definitions, with network statistics given in Table 1.

The networks in the data define an adjacency matrix L, where L(i,j) ∈ {0, 1}. We row-normalize

the adjacency matrix L, then multiply by β < 1, which implies that the DGP satisfies Assumption

1 (and thus (I − Γ) is invertible). This defines the “true" network Γ. That is, for each i, j 6= i,

21In our multiple-village results, we simulate just such a procedure, with results given in Table 5.
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TABLE 1
DIFFUSION OF MICROFINANCE NETWORK DATA DESCRIPTIVES

All Connections Money Borrow & Lend Rice Come & Go Visit Come & Go
Village Size Density Max Degree Density Max Degree Density Max Degree Density Max Degree

3 292 0.0305 46 0.0062 15 0.0089 11 0.0126 16
8 94 0.0897 35 0.0327 17 0.0380 16 0.0467 19

10 77 0.1141 25 0.0547 14 0.0437 10 0.0581 15
58 178 0.0528 30 0.0195 24 0.0232 13 0.0315 19
60 356 0.0225 39 0.0091 23 0.0106 19 0.0141 23

Notes: Table gives summary statistics for select villages from data collected by Banerjee et al. (2012).

Γ(i,j) = β
L(i,j)

∑k 6=i,j L(i,k)
. We construct yit according to

yit = ∑
j 6=i

Γ(i,j)yjt + ftηi + uit (25)

which corresponds to the assumed DGP in Equation (2), with factor structure as defined in Equa-

tion (4).

In all cases, we draw ft,uit ∼i.i.d. N(0, 1) and we set the number of factors as 1. In the results

that we present here, we set σ2
η = 1 and β = 0.25.22

6.2 Estimation Procedure and Performance Metrics

We simulate data according to the DGP as described in Subsection 6.1. For each set of data-

generation and estimation parameters (including the networks used), we run our estimation algo-

rithm across a range of penalization parameters λ1,1 and λ1,2. For some sets of results, we run a

version whereR = 0, which corresponds to estimation without accounting for the factor structure.

To measure performance, we define several performance metrics. For any estimation run, de-

fine Γ̂ as the estimated/detected network. We define the following performance metrics.

[1] Network Density = ∑i ∑j 6=i 1{Γ̂(i,j) 6=0}
N(N−1)

[2] Positive Predictive Value (PPV) = ∑i ∑j 6=i 1{Γ(i,j) 6=0}1{Γ̂(i,j) 6=0}
∑i ∑j 6=i 1{Γ̂(i,j) 6=0}

[3] Negative Predictive Value (NPV) = ∑i ∑j 6=i 1{(1−Γ(i,j) 6=0})(1−1{Γ̂(i,j) 6=0})
∑i ∑j 6=i(1−1{Γ̂(i,j) 6=0})

22Ongoing work is testing the sensitivity of results to different DGP parameter values. Note the edge cases here. First,
σ2
η = 0 corresponds to the case where there is no latent factor structure. Second, β = 0 corresponds to the case in which

there are no network-based peer effects.
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Estimated network density is simply the probability of detecting a link, among all possible pairs

of agents, in the estimated network. PPV is the probability that a detected link is an actual link. A

natural benchmark for PPV is (true) network density, as any PPV higher than the network density

implies that the algorithm does better than chance at finding network links. Conversely, NPV is

the probability that a pair classified as not linked is in fact not linked. A natural benchmark is (1 -

density).

6.3 Main Results with a Single Village

First, we present results from a single village. For purposes of this exercise, we set T =

1, 000, 000, and we interpret these results as assessing the case closest to that assumed for pur-

poses of identification. That is, when T is very large, the covariance matrix is close to perfectly

observed.23

Our first results are given in Table 2. Across a range of (λ1,1,λ1,2), Panel A shows detected

network density, Panel B shows PPV, and Panel C shows NPV. As expected, density is decreasing

as the penalization parameters increase, corresponding to moving to the right and downward

within each panel. PPV is also increasing with the penalization parameters: as we raise the penalty

for each link detected, the likelihood of each detected link being a true link is rising. Conversely,

NPV is decreasing with the penalty parameters.

The limiting cases are illustrative here. When λ1,1 = λ1,2 = 0, then there is no penalization

for detected links. As such, due to noise in the data, all pairs are detected as linked some nonzero

amount, which implies that detected density is 1 and PPV is simply network density. Conversely,

when both penalization parameters are high, the algorithm detects almost no links, and network

density is close to zero. In this case, NPV approaches (1 - density).

The sensitivity of results to choice of penalization parameters illustrates the importance of the

choice of penalty terms. When penalties are low, the algorithm returns too many “false positives";

when they are high, it returns too many “false negatives." Intermediate values of the penalty terms

λ1,1 and λ1,2 trade off these two concerns.

We also report results for R = 0 in estimation, which corresponds to a “misspecified" model

that ignores the latent factor structure. These results are shown in Table 3, which gives analogous

23We assess performance for smaller T in Subsection 7.1.
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TABLE 2
PERFORMANCE METRICS FOR SINGLE VILLAGE

(R = 1)

λ1,1 λ1,2
×10−6 0 0.1 1 10 100 1000 10000
Panel A: Network Density
0.000 1.0000 0.9957 0.9135 0.0659 0.0226 0.0143 0.0073
0.010 0.9994 0.9926 0.8985 0.0642 0.0225 0.0140 0.0073
0.025 0.9948 0.9872 0.8717 0.0620 0.0223 0.0138 0.0074
0.050 0.9863 0.9738 0.8176 0.0598 0.0219 0.0133 0.0073
0.075 0.9687 0.9480 0.7390 0.0581 0.0215 0.0131 0.0073
0.100 0.9326 0.9067 0.6359 0.0563 0.0211 0.0129 0.0073
0.250 0.1500 0.1378 0.0779 0.0472 0.0196 0.0117 0.0070
0.500 0.0487 0.0485 0.0478 0.0386 0.0171 0.0103 0.0069
0.750 0.0405 0.0404 0.0392 0.0319 0.0155 0.0097 0.0066
1.000 0.0312 0.0312 0.0304 0.0258 0.0136 0.0088 0.0064

Panel B: Positive Predictive Value
0.000 0.0528 0.0530 0.0577 0.7475 0.9215 0.9468 0.9610
0.010 0.0528 0.0532 0.0587 0.7651 0.9251 0.9501 0.9610
0.025 0.0531 0.0535 0.0605 0.7844 0.9260 0.9517 0.9612
0.050 0.0535 0.0542 0.0645 0.8083 0.9289 0.9523 0.9610
0.075 0.0545 0.0556 0.0713 0.8250 0.9349 0.9517 0.9652
0.100 0.0566 0.0582 0.0828 0.8417 0.9429 0.9507 0.9651
0.250 0.3477 0.3778 0.6619 0.9476 0.9676 0.9730 0.9955
0.500 0.9961 0.9961 0.9960 0.9984 1.0000 1.0000 1.0000
0.750 0.9984 0.9984 0.9984 0.9980 1.0000 1.0000 1.0000
1.000 0.9980 0.9980 0.9979 0.9975 1.0000 1.0000 1.0000

Panel C: Negative Predictive Value
0.000 n/a 1.0000 0.9993 0.9962 0.9673 0.9602 0.9539
0.010 1.0000 1.0000 0.9994 0.9960 0.9672 0.9599 0.9539
0.025 1.0000 1.0000 0.9995 0.9955 0.9671 0.9598 0.9539
0.050 1.0000 0.9988 0.9995 0.9952 0.9668 0.9593 0.9539
0.075 0.9980 0.9988 0.9996 0.9948 0.9665 0.9592 0.9539
0.100 0.9991 0.9993 0.9996 0.9943 0.9664 0.9589 0.9539
0.250 0.9992 0.9991 0.9987 0.9915 0.9655 0.9581 0.9538
0.500 0.9954 0.9952 0.9945 0.9851 0.9637 0.9571 0.9538
0.750 0.9871 0.9870 0.9858 0.9783 0.9621 0.9565 0.9535
1.000 0.9777 0.9777 0.9768 0.9722 0.9603 0.9556 0.9533

Notes: β = 0.25. Village 58, network of All Relationships. See Table
1 forN and density. T = 1, 000, 000, ση = 1 in all simulations. R = 1
in estimation.
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results to Table 2. Note that the classification problem is “easier" in a sense here since the number

of parameters is much smaller. The “misspecified" algorithm does detect systematically sparser

networks for a given combination of penalty parameters.

6.4 Multiple Villages

Next, we present results pooling multiple villages. This illustrates the utility of using cross-

village covariances to identify η, with increases in the precision of detected network links. We

perform this exercise under three different estimation procedures:

[1] Impose no prior knowledge of village structure (Unrestricted)

[2] Restrict all cross-village links to be zero (Restricted)

[3] Estimate villages separately (Separate)

Table 4 gives results for the unrestricted algorithm. Note that NPV and PPV are generally

smaller than in the single-village case in Table 2, which follows from the fact that this is a “harder"

problem as there are more parameters to estimate. In Panel D, we see that with relatively low

values of penalization parameters, the algorithm detects a non-trivial number of cross-village links

that are clearly erroneous. In contrast, with higher penalty values, the network detects very few

cross-villlage links.

In order to prevent the algorithm from detecting cross-village links, we run a restricted version

of the algorithm, where we restrict cross-village pairs to be unlinked. These results are shown in

Table 5. Note that the algorithm here by design cannot detect cross-village links. Further, compar-

ing Tables 4 to 5 shows that the restricted version generally performs better in the sense of higher

PPV and NPV for a given choice of penalty parameters.

Finally, in Table 6 we show results where the algorithm is run separately for each of the two

villages. This procedure employs less “data" than the Restricted version (Table 5), since it does

not utilize cross-village correlation in estimating the factor structure. The algorithm generally

performs worse than the Restricted version, in terms of both NPV and PPV.24

24Note that the range of λ1,1 and λ1,2 is different for the results in Table 6 as compared to Tables 4-5.
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TABLE 3
PERFORMANCE METRICS FOR SINGLE VILLAGE

(R = 0)

λ1,1 λ1,2
×10−6 0 0.1 1 10 100 1000 10000
Panel A: Network Density
0.000 1.0000 0.8294 0.2224 0.0599 0.0244 0.0157 0.0071
0.010 0.5307 0.4344 0.1593 0.0569 0.0237 0.0154 0.0071
0.025 0.2330 0.2084 0.1100 0.0534 0.0229 0.0150 0.0070
0.050 0.1108 0.1048 0.0778 0.0522 0.0222 0.0147 0.0068
0.075 0.0770 0.0754 0.0660 0.0516 0.0219 0.0146 0.0068
0.100 0.0651 0.0645 0.0606 0.0508 0.0216 0.0143 0.0068
0.250 0.0539 0.0538 0.0536 0.0461 0.0191 0.0131 0.0067
0.500 0.0452 0.0451 0.0439 0.0346 0.0162 0.0114 0.0063
0.750 0.0280 0.0278 0.0272 0.0237 0.0127 0.0097 0.0060
1.000 0.0178 0.0178 0.0175 0.0157 0.0100 0.0083 0.0055

Panel B: Positive Predictive Value
0.000 0.0528 0.0637 0.2375 0.8606 0.9544 0.9615 0.9686
0.010 0.0995 0.1216 0.3316 0.9041 0.9692 0.9731 0.9686
0.025 0.2267 0.2535 0.4800 0.9619 0.9931 0.9894 0.9818
0.050 0.4768 0.5038 0.6792 0.9763 1.0000 1.0000 0.9953
0.075 0.6862 0.7000 0.8008 0.9809 1.0000 1.0000 1.0000
0.100 0.8109 0.8193 0.8712 0.9875 1.0000 1.0000 1.0000
0.250 0.9794 0.9800 0.9816 0.9959 1.0000 1.0000 1.0000
0.500 0.9965 0.9965 0.9971 0.9982 1.0000 1.0000 1.0000
0.750 0.9977 0.9977 0.9977 0.9973 1.0000 1.0000 1.0000
1.000 0.9964 0.9964 0.9964 1.0000 1.0000 1.0000 1.0000

Panel C: Negative Predictive Value
0.000 n/a 1.0000 1.0000 0.9986 0.9697 0.9617 0.9537
0.010 1.0000 1.0000 1.0000 0.9986 0.9694 0.9615 0.9537
0.025 1.0000 1.0000 1.0000 0.9984 0.9693 0.9614 0.9537
0.050 1.0000 1.0000 1.0000 0.9981 0.9687 0.9613 0.9537
0.075 1.0000 1.0000 1.0000 0.9977 0.9684 0.9612 0.9537
0.100 1.0000 1.0000 1.0000 0.9972 0.9681 0.9609 0.9537
0.250 0.9999 0.9999 0.9998 0.9928 0.9657 0.9598 0.9535
0.500 0.9919 0.9917 0.9905 0.9810 0.9627 0.9581 0.9532
0.750 0.9744 0.9742 0.9736 0.9701 0.9593 0.9565 0.9529
1.000 0.9643 0.9643 0.9639 0.9623 0.9567 0.9551 0.9524

Notes: β = 0.25. Village 58, network of All Relationships. See Table
1 forN and density. T = 1, 000, 000, ση = 1 in all simulations. R = 0
in estimation.
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TABLE 4
PERFORMANCE METRICS FOR TWO-VILLAGE RESULTS

(UNRESTRICTED)

λ1,1 λ1,2
×10−6 0 0.1 1 10 100 1000 10000
Panel A: Network Density
0.000 1.0000 0.9961 0.9539 0.1879 0.0301 0.0149 0.0076
0.010 0.9942 0.9872 0.9416 0.1636 0.0295 0.0149 0.0076
0.025 0.9811 0.9739 0.9221 0.1364 0.0288 0.0148 0.0076
0.050 0.9556 0.9458 0.8805 0.1018 0.0283 0.0143 0.0076
0.075 0.9145 0.9030 0.8191 0.0788 0.0276 0.0141 0.0076
0.100 0.8563 0.8433 0.7184 0.0644 0.0269 0.0137 0.0076
0.250 0.1065 0.1028 0.0761 0.0463 0.0251 0.0130 0.0075
0.500 0.0433 0.0433 0.0426 0.0373 0.0228 0.0117 0.0072
0.750 0.0337 0.0337 0.0332 0.0303 0.0204 0.0110 0.0068
1.000 0.0279 0.0279 0.0277 0.0264 0.0178 0.0097 0.0067

Panel B: Positive Predictive Value (within Village)
0.000 0.0499 0.0501 0.0521 0.2562 0.9233 0.9769 0.9820
0.010 0.0502 0.0506 0.0528 0.2936 0.9336 0.9769 0.9820
0.025 0.0508 0.0512 0.0538 0.3522 0.9403 0.9791 0.9820
0.050 0.0521 0.0526 0.0563 0.4706 0.9477 0.9832 0.9820
0.075 0.0544 0.0551 0.0604 0.6045 0.9577 0.9853 0.9819
0.100 0.0580 0.0589 0.0687 0.7368 0.9706 0.9900 0.9818
0.250 0.4591 0.4752 0.6390 0.9643 0.9973 0.9921 0.9817
0.500 0.9857 0.9857 0.9855 0.9871 1.0000 1.0000 1.0000
0.750 0.9898 0.9898 0.9896 0.9955 1.0000 1.0000 1.0000
1.000 0.9951 0.9951 0.9950 0.9948 1.0000 1.0000 1.0000

Panel C: Negative Predictive Value (within Village)
0.000 n/a 1.0000 0.9948 0.9978 0.9771 0.9641 0.9572
0.010 1.0000 1.0000 0.9959 0.9977 0.9769 0.9640 0.9572
0.025 0.9964 0.9974 0.9960 0.9978 0.9765 0.9640 0.9572
0.050 0.9953 0.9962 0.9965 0.9977 0.9762 0.9636 0.9572
0.075 0.9976 0.9979 0.9975 0.9975 0.9758 0.9634 0.9572
0.100 0.9981 0.9982 0.9978 0.9974 0.9755 0.9631 0.9572
0.250 0.9988 0.9988 0.9986 0.9944 0.9745 0.9625 0.9571
0.500 0.9924 0.9924 0.9917 0.9863 0.9723 0.9613 0.9569
0.750 0.9828 0.9828 0.9824 0.9796 0.9699 0.9606 0.9566
1.000 0.9772 0.9771 0.9769 0.9757 0.9673 0.9594 0.9565

Panel D: Percent of Across-Village Links Detected (within Village)
0.000 1.0000 0.9997 0.9988 0.2236 0.0023 0.0003 0.0001
0.010 0.9997 0.9997 0.9974 0.1864 0.0019 0.0003 0.0001
0.025 0.9996 0.9994 0.9934 0.1426 0.0016 0.0003 0.0001
0.050 0.9974 0.9963 0.9809 0.0865 0.0013 0.0003 0.0001
0.075 0.9853 0.9828 0.9572 0.0479 0.0011 0.0003 0.0001
0.100 0.9644 0.9606 0.8906 0.0242 0.0008 0.0001 0.0001
0.250 0.1008 0.0944 0.0465 0.0015 0.0001 0.0001 0.0001
0.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: β = 0.25. Villages 8 and 10, network of All Relationships.
See Table 1 for N and density. T = 1, 000, 000, ση = 1 in all simula-
tions. R = 1 in estimation.
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TABLE 5
PERFORMANCE METRICS FOR TWO-VILLAGE RESULTS

(RESTRICTED)

λ1,1 λ1,2
×10−6 0 0.1 1 10 100 1000 10000
Panel A: Network Density
0.000 1.0000 0.9960 0.9531 0.2282 0.0598 0.0236 0.0141
0.010 0.9861 0.9786 0.9347 0.2017 0.0593 0.0233 0.0141
0.025 0.9634 0.9556 0.9062 0.1723 0.0581 0.0230 0.0140
0.050 0.9144 0.9056 0.8462 0.1382 0.0567 0.0222 0.0138
0.075 0.8478 0.8384 0.7648 0.1185 0.0552 0.0222 0.0138
0.100 0.7603 0.7482 0.6462 0.1083 0.0537 0.0221 0.0138
0.250 0.1130 0.1122 0.1065 0.0907 0.0500 0.0207 0.0126
0.500 0.0863 0.0863 0.0849 0.0742 0.0455 0.0190 0.0123
0.750 0.0671 0.0671 0.0662 0.0604 0.0407 0.0179 0.0123
1.000 0.0556 0.0555 0.0551 0.0526 0.0355 0.0167 0.0122

Panel B: Positive Predictive Value (within Village)
0.000 0.0995 0.0999 0.1041 0.4242 0.9255 0.9739 0.9757
0.010 0.1009 0.1017 0.1062 0.4798 0.9283 0.9765 0.9757
0.025 0.1033 0.1041 0.1093 0.5581 0.9363 0.9762 0.9756
0.050 0.1087 0.1096 0.1170 0.6921 0.9444 0.9784 0.9802
0.075 0.1169 0.1182 0.1293 0.8052 0.9566 0.9784 0.9802
0.100 0.1303 0.1323 0.1528 0.8760 0.9719 0.9814 0.9801
0.250 0.8623 0.8687 0.9118 0.9804 0.9986 0.9967 0.9891
0.500 0.9857 0.9857 0.9855 0.9871 1.0000 1.0000 1.0000
0.750 0.9898 0.9898 0.9896 0.9955 1.0000 1.0000 1.0000
1.000 0.9951 0.9951 0.9950 0.9948 1.0000 1.0000 1.0000

Panel C: Negative Predictive Value (within Village)
0.000 n/a 1.0000 0.9942 0.9965 0.9530 0.9217 0.9131
0.010 1.0000 1.0000 0.9958 0.9966 0.9527 0.9214 0.9131
0.025 1.0000 1.0000 0.9956 0.9959 0.9521 0.9212 0.9130
0.050 0.9984 0.9978 0.9969 0.9955 0.9513 0.9205 0.9129
0.075 0.9973 0.9975 0.9974 0.9954 0.9506 0.9205 0.9129
0.100 0.9983 0.9981 0.9979 0.9949 0.9500 0.9205 0.9128
0.250 0.9977 0.9977 0.9973 0.9884 0.9478 0.9195 0.9119
0.500 0.9843 0.9842 0.9827 0.9717 0.9434 0.9179 0.9118
0.750 0.9645 0.9645 0.9636 0.9581 0.9387 0.9169 0.9118
1.000 0.9532 0.9531 0.9527 0.9502 0.9336 0.9158 0.9116

Notes: β = 0.25. Villages 8 and 10, network of All Relationships.
See Table 1 for N and density. T = 1, 000, 000, ση = 1 in all simula-
tions. R = 1 in estimation.
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TABLE 6
PERFORMANCE METRICS FOR TWO-VILLAGE RESULTS

(SEPARATE)

λ1,1 λ1,2
×10−4 0 0.001 0.01 0.1 1 10 100
Panel A: Network Density
0.000 1.0000 1.0000 0.9966 0.8821 0.1244 0.0271 0.0152
0.010 0.4804 0.4796 0.4707 0.4191 0.1171 0.0274 0.0152
0.025 0.4229 0.4228 0.4204 0.3869 0.1095 0.0257 0.0149
0.050 0.4062 0.4059 0.4019 0.3465 0.1005 0.0222 0.0139
0.075 0.3934 0.3928 0.3900 0.2842 0.0955 0.0199 0.0119
0.100 0.3872 0.3871 0.3803 0.2367 0.0909 0.0186 0.0108
0.250 0.1836 0.1862 0.1896 0.1327 0.0677 0.0156 0.0088
0.500 0.0510 0.0509 0.0502 0.0465 0.0256 0.0127 0.0070
0.750 0.0189 0.0189 0.0188 0.0182 0.0163 0.0101 0.0067
1.000 0.0149 0.0149 0.0149 0.0147 0.0128 0.0086 0.0062

Panel B: Positive Predictive Value (within Village)
0.000 0.0995 0.0995 0.0965 0.0802 0.4306 0.9116 0.9369
0.010 0.1753 0.1753 0.1732 0.1503 0.4336 0.9125 0.9369
0.025 0.1601 0.1598 0.1551 0.1300 0.3867 0.9120 0.9450
0.050 0.1255 0.1248 0.1163 0.1082 0.3306 0.9012 0.9409
0.075 0.0972 0.0960 0.0917 0.1066 0.3034 0.8900 0.9306
0.100 0.0842 0.0846 0.0829 0.1126 0.2969 0.8860 0.9367
0.250 0.1295 0.1310 0.1316 0.1606 0.3239 0.9031 0.9302
0.500 0.4274 0.4280 0.4358 0.4654 0.7620 0.9676 0.9804
0.750 0.9746 0.9746 0.9781 0.9849 1.0000 1.0000 1.0000
1.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Panel C: Negative Predictive Value (within Village)
0.000 n/a n/a 0.0000 0.7565 0.9476 0.9232 0.9134
0.010 0.9706 0.9704 0.9661 0.9371 0.9448 0.9234 0.9134
0.025 0.9449 0.9447 0.9409 0.9197 0.9358 0.9219 0.9133
0.050 0.9183 0.9178 0.9118 0.9051 0.9263 0.9187 0.9124
0.075 0.8990 0.8982 0.8955 0.9033 0.9220 0.9166 0.9105
0.100 0.8909 0.8911 0.8903 0.9046 0.9203 0.9154 0.9097
0.250 0.9073 0.9077 0.9080 0.9099 0.9168 0.9132 0.9079
0.500 0.9181 0.9181 0.9183 0.9184 0.9179 0.9117 0.9067
0.750 0.9174 0.9174 0.9173 0.9169 0.9154 0.9097 0.9066
1.000 0.9141 0.9141 0.9141 0.9139 0.9122 0.9083 0.9062

Notes: β = 0.25. Villages 8 and 10, network of All Relationships.
See Table 1 for N and density. T = 1, 000, 000, ση = 1 in all simula-
tions. R = 1 in estimation.
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7 Sensitivity

Here, we extend our simulations in a number of directions. To conserve space, all tables refer-

enced here are in Appendix C.

7.1 Sensitivity to T

Our results in Section 6 demonstrate that the algorithm performs quite well when T = 1, 000, 000,

corresponding to the case where the covariance structure is close to perfectly observed. In real ap-

plications, we are unlikely to observe this many repeated observations. Accordingly, we assess

the algorithm’s performance for lower values of T . First, Table A.1 gives results for T = 1000.

While PPV is never near 1 as in the case with higher T (Table 2), we see that PPV is much higher

than network density for many penalty values. Results get much noiser when we set T = 100 and

T = 10, as shown in Tables A.2 and A.3.

We also reproduce our two-village results with T = 1000. Results are generally consistent with

those shown in Tables 4, 5, and 6, although all results are noisier. That is, the Restricted model

(Table A.5) outperforms the Unrestricted and Separate models (Tables A.4 and A.6, respectively).

7.2 Network Density and Number of Agents

Our main results in Table 2 use Village 58, which has density of 0.0528 among All Connections,

approximately average of the 75 villages in the Diffusion of Microfinance dataset. To show that

our results are not sensitive to this choice, we also estimate on the most and least dense networks

that we find in the data. For the most dense, we use the network of All Connections in Village 10,

with a density of 0.1141. For the least dense, we use the network of Give Advice / Help Decision

for Village 3, with a density of 0.0062. All other parameters of the DGP are the same as those

used for Table 2 above. These results are shown in Tables A.7 and A.8, respectively, with results

qualitatively very similar to those in Table 2.

We also perform simulations with the largest village in the Diffusion of Microfinance dataset.

This is Village 60, which has 356 households, as compared to 178 in Village 58 used in Table 2.

Again, the algorithm performs quite similarly for this village, as shown by comparing results in

Tables A.9 and 2.
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7.3 Number of Villages

Finally, in order to show that estimation is feasible with many villages, we perform our multiple-

village analysis with three villages instead of two. As in the two village case, the Restricted model

performs better (in terms of PPV and NPV) than either the Unrestricted or Separate ones. Results

for three villages are shown in Tables A.10, A.11, and A.12.

8 Discussion

The study of network-based peer effects is often limited by the unavailability of high-quality

data on network connections. In the absence of such data, in this paper we provide new results on

identification of the network structure itself. Our results bring together insights from matrix com-

pletion, matrix decomposition, and graph theory to give conditions under which the network and

latent factor structures are separately identified. We also provide an iterative proximal gradient

descent algorithm and demonstrate its performance in estimation.

Our results make four major contributions vis-à-vis the existing literature. First, by relying

solely on covariance among outcomes, our results require no exogeneity assumptions or even ob-

servation of time-varying covariates. Second, the latent factor structure allows for rich individual-

level heterogeneity. Third, our method allows for identification of the absence of peer effects. Fi-

nally, we extend the estimator of Battaglini et al. (2021) to allow for unobserved, low-dimensional

common shocks.

The identification and estimation methods developed here have potentially wide-ranging ap-

plications in studying peer effects in settings in which network data is unavailable. A necessary

ingredient in any such application is panel data on outcomes, from which can be constructed an

empirical covariance matrix of outcomes across time.

We highlight areas of ongoing and future research. First, ongoing efforts are analyzing methods

to choose the penalization parameters. Second, future work will more thoroughly analyze the

model’s performance in “shorter" panel settings, in an effort to open up more applications. Finally,

we leave the issue of incorporating time-varying covariates into our identification and estimation

methods to future work.

34



References

Agarwal, Alekh, Sahand Negahban, and Martin J Wainwright. 2012. “Noisy matrix decomposi-

tion via convex relaxation: Optimal rates in high dimensions.” The Annals of Statistics, 1171–1197.

Alidaee, Hossein, Eric Auerbach, and Michael P. Leung. 2020. “Recovering Network Structure

from Aggregated Relational Data using Penalized Regression.” Unpublished Working Paper.

Anderson, Theodore W, and Herman Rubin. 1956. “Statistical inference in factor analysis.” Vol. 5,

111–150.

Bai, Jushan. 2009. “Panel data models with interactive fixed effects.” Econometrica, 77(4): 1229–

1279.

Banerjee, Abhijit, Arun G. Chandrasekhar, Ester Duflo, and Matthew O. Jackson. 2012. “The

Diffusion of Microfinance.” NBER Working Paper No. 17743.

Battaglini, Marco, Forrest W. Crawford, Eleonora Patacchini, and Sida Peng. 2021. “A Graphical

Lasso Approach to Estimating Network Connections: The Case of U.S. Lawmakers.” Unpub-

lished Working Paper.

Bhojanapalli, Srinadh, and Prateek Jain. 2014. “Universal matrix completion.” 1881–1889.

Bien, Jacob, Jonathan Taylor, and Robert Tibshirani. 2013. “A lasso for hierarchical interactions.”

Annals of Statistics, 41(3): 1111–1141.

Bishop, William E, and Byron M Yu. 2014. “Deterministic symmetric positive semidefinite matrix

completion.” Advances in Neural Information Processing Systems, 27: 2762–2770.

Blume, Lawrence E., William A. Brock, Steven N. Durlauf, and Rajshri Jayaraman. 2015. “Linear

Social Interactions Models.” Journal of Political Economy, 123(2): 444–496.

Boucher, Vincent, and Aristide Houndetoungan. 2019. “Eestimating Peer Effects Using Partial

Network Data.” Unpublished Working Paper.

Boyd, Stephen, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2010. “Distributed

Optimization and Statistical Learning via the Alternating Direction Method of Multipliers.”

Foundations and Trends in Machine Learning, 3(1): 1–122.

35



Bramoullé, Yann, Habiba Djebbari, and Bernard Fortin. 2009. “Identification of Peer Effects

through Social Networks.” Journal of Econometrics, 150(1): 41–55.

Breza, Emily, Arun G. Chandrasekhar, Tyler H. McCormick, and Mengjie Pan. 2020. “Using ag-

gregated relational data to feasibly identify network structure without network data.” American

Economic Review, 110(8): 2454–84.

Candès, Emmanuel J, and Benjamin Recht. 2009. “Exact matrix completion via convex optimiza-

tion.” Foundations of Computational mathematics, 9(6): 717–772.

Candès, Emmanuel J, and Terence Tao. 2010. “The power of convex relaxation: Near-optimal

matrix completion.” IEEE Transactions on Information Theory, 56(5): 2053–2080.

Cevher, Volkan, Stephen Becker, and Mark Schmidt. 2014. “Convex Optimization for Big Data:

Scalable, randomized, and parallel algorithms for big data analytics.” IEEE Signal Processing

Magazine, 31(5): 32 – 43.

Chandrasekaran, Venkat, Sujay Sanghavi, Pablo A. Parrilo, and Alan S. Willsky. 2011. “rank-

sparsity incoherence for matrix decomposition.” SIAM Journal on Optimization, 21(2): 572–596.

Chandrasekhar, Arun, and Randall Lewis. 2011. “Econometrics of Sampled Networks.” Unpub-

lished Working Paper.

Chiong, Khai Xiang, and Hyungsik Roger Moon. 2018. “Estimation of graphical models using

the L 1, 2 norm.” The Econometrics Journal, 21(3): 247–263.

DeGiorgi, Giacomo, Michele Pelllizzari, and Silvia Radaelli. 2010. “Identification of Social In-

teractions through Partially Overlapping Peer Groups.” American Economic Journal: Applied Eco-

nomics, 2: 241–255.

de Paula, Á, Imran Rasul, and Pedro Souza. 2020. “Identifying Network Ties from Panel Data:

Theory and an Application to Tax Competition.” Unpublished Working Paper.

Diestel, Reinhard. 2005. “Graph theory.” Graduate texts in mathematics, 173.

Epple, Dennis, and Richard Romano. 2011. “Peer Effects in Education: A Survey of the Theory

and Evidence.” In Handbook of Social Economics. Vol. 1, 1053–1165.

36



Fosdick, Bailey K., and Peter D. Hoff. 2015. “Testing and Modeling Dependencies between a

Network and Nodal Attributes.” Journal of the American Statistical Association, 110(511): 1047–

1056.

Graham, Bryan S. 2008. “Identifying social interactions through conditional variance restrictions.”

Econometrica, 76(3): 643–660.

Gramfort, Alexandre, Matthieu Kowalski, and Matti Hämäläinen. 2012. “Mixed-norm estimates

for the M/EEG inverse problem using accelerated gradient methods.” Physics in Medicine &

Biology, 57(7): 1937.

Griffith, Alan. 2021. “Name Your Friends but Only Five? The Importance of Censoring in Peer

Effects Estimates using Social Network Data.” Journal of Labor Economics. Forthcoming.

Harris, Kathleen Mullan. 2009. The National Longitudinal Study of Adolescent to Adult Health (Add

Health), Waves I and II, 1994-1996. Carolina Population Center, University of North Carolina at

Chapel Hill.

Hoff, Peter, Bailey Fosdick, Alex Volfovsky, and Katherine Stovel. 2013. “Likelihoods for Fixed

Rank Nomination Networks.” Network Science, 1(3): 253–277.

Hsu, Daniel, Sham M Kakade, and Tong Zhang. 2011. “Robust matrix decomposition with sparse

corruptions.” IEEE Transactions on Information Theory, 57(11): 7221–7234.

Jackson, Matthew O. 2008. Social and Economic Networks. Princeton, New Jersey:Princeton Press.

Király, Franz, and Ryota Tomioka. 2012. “A combinatorial algebraic approach for the identifiabil-

ity of low-rank matrix completion.” arXiv preprint arXiv:1206.6470.

Lewbel, Arthur. 2019. “The identification zoo: Meanings of identification in econometrics.” Journal

of Economic Literature, 57(4): 835–903.

Lewbel, Arthur, Xi Qu, and Xun Tang. 2021a. “Social Networks with Mismeasured Links.” Un-

published Working Paper.

Lewbel, Arthur, Xi Qu, and Xun Tang. 2021b. “Social Networks with Unobserved Links.” Unpub-

lished Working Paper.

37



Lyle, David S. 2009. “The Effects of Peer Group Heterogeneity on the Production of Human Capital

at West Point.” American Economic Jouranl: Applied Economics, 1(4): 69–84.

Manresa, Elena. 2016. “Estimating the Structure of Social Interactions Using Panel Data.” Unpub-

lished Working Paper.

Manski, Charles F. 1993. “Identification of Endogenous Social Effects: The Reflection Problem.”

Review of Economic Studies, 60(3): 531–542.

Miraldo, Marisa, Carol Propper, and Christiern Rose. 2021. “Identification of Peer Effects using

Panel Data.” Unpublished Working Paper.

Rose, Christiern D. 2017. “Identification of peer effects through social networks using variance

restrictions.” The Econometrics Journal, 20(3): S47–S60.

Rothenberg, Thomas J. 1971. “Identification in parametric models.” Econometrica, 577–591.

Sacerdote, Bruce. 2011. “Peer Effects in Education: How Might They Work, How Big Are They, and

How Much Do We Know Thus Far?” In Hanbook of the Economics of Education. Vol. 3, 249–277.

Singer, Amit, and Mihai Cucuringu. 2010. “Uniqueness of low-rank matrix completion by rigidity

theory.” SIAM Journal on Matrix Analysis and Applications, 31(4): 1621–1641.

Thirkettle, Matthew. 2019. “Identification and Estimation of Network Statistics with Missing Link

Data.” Unpublished Working Paper.

Tibshirani, Ryan J. 2014. “Adaptive piecewise polynomial estimation via trend filtering.” Annals

of Statistics, 42(1): 285–323.

von Neumann, John. 1951. Functional Operators: The Geometry of Orthogonal Spaces. Princeton Univ.

Press.

38



A Proofs

Lemma 1

Proof. Rewrite Equation (7) as Equation (A.1).

Σy − ZZ′ = (I− Γ′)U−1(I− Γ) (A.1)

Since we assume that Σy is always observed, given identification of ZZ′, the LHS of Equation (A.1)

is identified. Therefore, the RHS, (I− Γ′)U−1(I− Γ), is also identified. This expression is positive

definite and symmetric. Therefore, it has a unique positive-definite square root: M = (I− Γ′)U−
1
2

is identified.

For each i, M(i,i) =
1√
ui

, which identifies ui for all i and thus U. It immediately follows that we

can identify (I− Γ′) = U
1
2 M. Therefore, Γ is identified.

Next, from the definition of Z (Equation (9)),

Z = (I− Γ′)U−1η(IR + ηU−1η′)−
1
2 (A.2)

Since (I− Γ′), U−1 and (IR + ηU−1η′)−
1
2 are positive definite, we can rewrite (A.2) as (A.3).

η = U(I− Γ′)−1Z(IR + ηU−1η′)
1
2 (A.3)

Since everything on the RHS of Equation (A.3) is identified, this implies that η is also identified.

Lemma 2

Proof. We use a similar strategy to Király and Tomioka (2012) to identify sub-matrices using a zero-

determinant condition. For any matrix M, define |M| as its determinant. Since ZZ′ is of rank R,

each square sub-matrix of ZZ′ must be of rank at most R. Therefore, any R+ 1×R+ 1 sub-matrix

P must have |P| = 0.

Suppose that we observe all but entry (k, l) in a R+ 1×R+ 1 square sub-matrix P. Define a

matrix C(P) as the matrix of cofactors of P. That is, entry (i, j) of C(P) is the determinant of the
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sub-matrix formed by deleting row i and column j. So,

|P| = 0 = P(k,l)C(P)k,l + ∑
m 6=l

P(k,m)C(P)k,m (A.4)

Generically, C(P)k,l is not zero. Therefore,

P(k,l) = −
∑m 6=l P(k,m)C(P)k,m

C(P)k,l
(A.5)

Everything on the RHS of Equation (A.5) is observed by assumption. Therefore, P(k,l) is identified

(generically).

Lemma 3

Proof. Let i ∈ V ′1 , k ∈ V ′2 . W.l.o.g., let |V ′1| = |V ′2| = R. Define ZZ′11 as the matrix of rows/columns

of ZZ′ corresponding to agents in V ′1 , and ZZ′22 as the matrix of rows/columns of ZZ′ correspond-

ing to agents in V ′2 . ZZ′11 and ZZ′22 are identified by assumption [3] in the lemma statement.

Let ZZ′12 be the R×R matrix of rows/columns where rows correspond to agents in V ′1 and

columns to agents in V ′2 . Define a new block matrix W as follows:

W =

ZZ′11 ZZ′12

ZZ′′12 ZZ′22

 (A.6)

Clearly, W is a real, symmetric matrix and therefore diagonalizable. Define its diagonal decompo-

sition as W = LΛL′, where Λ has entries in decreasing order of magnitude along the diagonal.

W is a sub-matrix of ZZ′ and therefore has rank at most R. Accordingly, it has at most R

nonzero eigenvalues. Define Λ11 as the diagonalR×Rmatrix corresponding to the firstR rows/columns

of Λ. Rewrite W as follows, where all sub-matrices are R×R:

W =

L11 L12

L12
′ L22


Λ11 0

0 0


L11

′ L12

L12
′ L22

′

 (A.7)

=

L11Λ11L11
′ L11Λ11L12

L12
′Λ11L11

′ L12
′Λ11L12

 (A.8)
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Combining Equations (A.6) and (A.8) yields

ZZ′11 ZZ′12

ZZ′′12 ZZ′22

 =

L11Λ11L11
′ L11Λ11L12

L12
′Λ11L11

′ L12
′Λ11L12

 (A.9)

Since ZZ′11 is a symmetric positive-semidefinite real matrix, it has a unique square root, ZZ′
1
2
11,

which is identified. Similarly, ZZ′22 has a unique square root ZZ′
1
2
22, which is identified. Therefore,

from Equation (A.9),

ZZ′12 = L11Λ11L12 =
(

L11Λ11
1
2

) (
L12
′Λ11

1
2

)′
=

(
ZZ′

1
2
11

)(
ZZ′

1
2
22

)′
(A.10)

where L11Λ11
1
2 = ZZ′

1
2
11 and L12

′Λ11
1
2 = ZZ′

1
2
22 due to Equation (A.9). Since both terms on the RHS

of Equation (A.10) are identified, ZZ′12 is identified. Since ZZ′(i,k) corresponds to an element of

ZZ′12, ZZ′(i,k) is identified.

Lemma 4

Proof. D is diagonal. Therefore, for all j 6= i, element (i, j) of (I−G′)D(I−G) is given in Equation

(A.11).

(I−G′)D(I−G)(i,j) = −Γ′(i,j)D(j,j) −D(i,i)Γ(i,j) + ∑
k

Γ′(i,k)D(k,k)Γ(k,j)

= −D(j,j)Γ(j,i) −D(i,i)Γ(i,j) + ∑
k

D(k,k)Γ(k,i)Γ(k,j) (A.11)

Clearly, (i, j) /∈ E(G),E(G′) implies that Γ(i,j) = Γ(j,i) = 0. Further, (i, j) /∈ E(G′G) implies that

Γ(k,i)Γ(k,j) = 0 for all k. Therefore, the RHS of Equation (A.11) must be zero.

Lemma 5

Proof. By Turán’s Theorem, the density condition is sufficient for the existence of a clique of size

2R+ 1 in the complement of discretized graph defined on the edge setE(G1)∪E(G1
′)∪E(G1

′G1).

This clique is a fully-connected induced subgraph of size 2R+ 1. Define the set of agents in this
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clique as V ′′1 . Lemma 4 says that ZZ′(i,j) is identified for all i, j 6= i ∈ V ′′1 . Therefore, there is

a sub-matrix of ZZ′ that is of size 2R + 1 × 2R + 1 such that all but the diagonal elements are

identified.

Since all but the diagonal elements of this submatrix are identified, for each i ∈ V ′′1 , there is a

square sub-matrix of size R+ 1 of this all-but-diagonal identified sub-matrix of ZZ′ that contains

ZZ′(i,i) and all elements but ZZ′(i,i) are identified. Therefore, Lemma 2 guarantees that ZZ′(i,i) is

identified for all i ∈ V ′′1 .

Next, suppose that an agent k ∈ V ′′1 is connected to at least R agents in V ′′1 in the edge set de-

fined by E(G1) ∪E(G1
′) ∪E(G1

′G1). Therefore, for at leastR unique i ∈ V ′′1 , ZZ′(k,i) is identified.

In turn, for every j ∈ V ′′1 , there exists a R + 1× R + 1 submatrix of ZZ′ such that either (1) all

elements are identified, or (2) all elements but ZZ′(k,j) is identified. If (2), then Lemma 2 implies

that ZZ′(k,j) is identified for all j ∈ V ′′1 . Therefore, ZZ′(k,j) is identified for all j ∈ V ′′1 .

This prior step implies that, given a set of agents V ′′1 such that ZZ′(i,j) is identified for all i, j ∈

V1, we can iteratively add any agent k ∈ V ′′1 who has at least R links to agents in V ′′1 , and that

ZZ′(i,k) is identified for all i, k ∈ V ′′1 ∪ {k}. Define V ′1 as the set of agents that result when this

process stops: i.e., when no more agents in V ′′1 are connected to at least R agents in V ′′1 . The three

statements in Lemma 5 are thus true for the set of agents V ′1 .

Theorem 1

Proof. The strategy of this proof is to assume that there exist (Γ(1), η(1), U(1)) and (Γ(2), η(2), U(2))

and to show that these unobserved variables must be equal. First, define the edge setH as follows:

H = E(Γ(1)) ∪E(Γ(1)′) ∪E(Γ(1)′Γ(1)) ∪E(Γ(2)) ∪E(Γ(2)′) ∪E(Γ(2)′Γ(2)) (A.12)

with H giving its complement. Clearly, for any Γ(1), Γ(2), we observe ZZ′(i,j) whenever (i, j) ∈ H .

Step 1: Bounds on ‖E(H)‖ and δ(H)

The density condition on Γ implies maximums on the size of H as follows:

‖E(H)‖ = ‖E(Γ(1)) ∪E(Γ(1)′) ∪E(Γ(1)′Γ(1)) ∪E(Γ(2)) ∪E(Γ(2)′) ∪E(Γ(2)′Γ(2))‖

< ‖E(Γ(1)) ∪E(Γ(1)′) ∪E(Γ(1)′Γ(1))‖+ ‖E(Γ(2)) ∪E(Γ(2)′) ∪E(Γ(2)′Γ(2))‖
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<
N(NR − 2)

2 (A.13)

with corresponding lower bound on ‖E(H)‖. Similarly, minimum degree for any agent i in H is

given by

δ(H) ≥ (N − 1)− 2
(
N(1−m) + P1(R)m−R

2

)
≥ (N − P1(R))m+ (R− 1) (A.14)

Step 2: Existence of V1 ⊂ V where ZZ′(i,j) identified for all i, j ∈ V1

The condition ‖E(H)‖ < N(NR−2)
2 (A.13) implies that for the entire set of agents V , we can apply

Lemma 5. Therefore, there must exist a set V1 ⊂ V , where |V1| ≥ 2R+ 1 and ZZ′(i,j) is identified

for all i, j ∈ V1. Further, each agent in V1 may have at most (R− 1) links to agents in V1.

Step 3: Bounds on Total Degree for agents in V1 and V1

Suppose that |V1| = P < N . By Lemma 5, each agent i ∈ V1 may have at most (R− 1) links

to agents in V1. Since there may be at most P (P − 1) links among agents in V1 (where the upper

bound corresponds to the graph retricted to V1 being a clique of size |V1|), this implies that

∑
i∈V1

di ≤ P (P − 1) + (R− 1)(N − P ) (A.15)

Similarly, the maximum sum of degrees for agents in V1 is

∑
i∈V1

di ≤ (N − P )(N − P − 1) + (R− 1)(N − P ) (A.16)

In turn, the total number of links in H , defined as ‖E(H)‖ is bounded as follows:

‖E(H)‖ = ∑
i

di ≤ P (P − 1) + (N − P )(N − P − 1) + (R− 1)(N − P ) (A.17)

Step 4: If 2R+ 1 ≤ P ≤ P1(R) ⇒ there exists a clique of size 2R+ 1 in V1

Clearly P = |V1| ≥ 2R+ 1. Suppose that P ≤ P1(R) and there exists no clique of size 2R+ 1

in V1. So, by Turán’s Theorem, the maximum number of links among agents in V1 is m(N − P )2.
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Therefore,

‖E(H)‖ = ∑
i

di ≤ P (P − 1) + (N − P )m2 + 2(R− 1)(N − P ) (A.18)

If 2R + 1 ≤ P ≤ P1(R), then the RHS of Inequality (A.18) is less than mN2, which contradicts

Inequality (A.13) in Step 1: that is, there are not enough total links in H to satisfy the minimum

condition for ‖E(H)‖. Therefore, the supposition that there does not exist a clique of size 2R+ 1

must be false whenever 2R+ 1 ≤ P ≤ P1(R).

Step 5: If there exists a clique of size 2R+ 1 in V1, iterate

If there exists a clique of size 2R+ 1 in V1, then define V2 ⊂ V1 ⊂ V as containing all agents

in this set. By analogous reasoning to Lemma 5, it must be the case that ZZ′(i,j) is identified for

all i, j ∈ V2. By Lemma 3, it is also the case that ZZ′(i,j) is identified for all i, j ∈ V1 ∪ V2. Define

V ′1 = V1 ∪ V2.

If there still exists a clique of size 2R+ 1 in V ′1 , then define V1 = V ′1 and iterate this process until

no longer true. That is, iteratively add agents to V ′1 until there is no longer a clique of size 2R+ 1

in V ′1

Step 6: P1(R) < P ′ < N ⇒ average degree of agents in V ′1 is too small

Steps 4 and 5 imply that it must be the case that P ′ = |V ′1| > P1(R). Now, suppose that P ′ < N

(and thus V ′1 is non-empty). So,

∑
i∈V ′1

di ≤ (N − P ′)2m+ (R− 1)(N − P ′) (A.19)

and therefore, the average degree of agents in V ′1 is

1
N − P ′ ∑

i∈V ′1

di ≤ (N − P ′)m+ (R− 1) < (N − P1(R))m+ (R− 1) (A.20)

and thus the average degree of agents in V ′1 is below the minimum degree in H as shown in Line

(A.14), which implies a contradiction.

Step 7: Bring it all together
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Steps 4-5 together imply that we can construct a set V ′1 such that |V ′1| = P ′ > P1(R) and ZZ′(i,j)

is identified for all i, j ∈ V ′1 . Step 6 says that P1(R) < P ′ < N contradicts the minimum degree

condition for H . So, P ′ = N . Therefore, V ′1 = V and ZZ′(i,j) is identified for all i, j ∈ V .

Finally, since ZZ′ is identified, Lemma 1 immediately gives identification of (Γ, η, U).

Theorem 2

Proof. Let i ∈ V ′. W.l.o.g., suppose that |V ′| = 2R+ 1. First, note that for all i, j 6= i, ZZ′(i,j) is

identified by the restriction: since (i, j) /∈ E(Γ) ∪E(Γ′) ∪E(Γ′Γ), Lemma 4 says that we observe

ZZ′(i,j).

Since ZZ′(i,j) is observed for all i, j 6= i, then there exists a 2R + 1 sub-matrix of ZZ′ along

the main diagonal such that all but the diagonal elements are identified. Thus, for each i ∈ V ′,

there exists a sub-matrix of this sub-matrix of size R+ 1×R+ 1 such that all entries except ZZ′(i,i)

are identified. Therefore, by Lemma 2, ZZ′(i,i) is identified for all i ∈ V ′. Accordingly, ZZ′(i,j) is

identified for all i, j ∈ V ′.

The prior argument applies to all agents k, l 6= k. Suppose that agents k, l are in different sets V ′1

and V ′2 , each of which satisfies the Theorem criteria. Lemma 3 immediately provides that ZZ′(k,l) is

identified. Together with the prior paragraph, this implies that ZZ′(i,j) is identified for all i, j ∈ V .

Finally, since ZZ′ is identified, Lemma 1 immediately gives identification of (Γ, η, U).
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B Estimation Details

Algorithm 1 in the text nests a proximal gradient descent algorithm, which we outline here.

This consists of two steps. First, the Gradient Descent step calculates the gradient and takes a step

in the direction of steepest descent. When R = 1, the gradient is given in Equation (A.21).

∇L(Γ, η,σ2) =


vec( ∂L∂Γ′ )

∂L
∂η

∂L
∂σ2

 (A.21)

where vec() is the “vector" operator that reshapes a N ×N matrix into a N2 × 1 vector.

∂L

∂Γ
= 2(I − Γ′)−1 +

2
σ2(σ2 + η′η)

ηη′(I − Γ)S− 2
σ2 (I − Γ)S (A.22)

∂L

∂η
=

2
σ2 + η′η

η− 2
σ2(σ2 + η′η)

(I − Γ)S(I − Γ′)η

+
2σ2

σ2(σ2 + η′η)
tr((I − Γ)S(I − Γ′)ηη′)η (A.23)

∂L

∂σ2 =
1

σ2 + η′η
+
N − 1
σ2 +

2σ2 + η′η

σ2(σ2 + η′η)
tr((I − Γ)S(I − Γ′)ηη′)

− 1
(σ2)2 tr((I − Γ)S(I − Γ′)) (A.24)

For a given step size, this generates a new estimate (Γ̃(z), η̂(z), σ̂(z)) defined as follows


Γ̃(z)

η̂(z)

σ̂(z)

 =


Γ̃(z)

η̂(z)

σ̂(z)

+ s(z)∇L(Γ(z), η(z),σ(z)) (A.25)

where s(z) is the step size at step (z). We use a constant step size with backtracking line-search.

Second, the “prox" step performs shrinkage on Γ̃(z) to arrive at Γ̂(z). The prox function is de-

fined as follows:

Γ̂(z) = prox(Γ̃(z)) = arg min
Γ
‖Γ− Γ̃(z)‖F + λ1,1‖Γ‖1,1 + λ1,2‖Γ‖1,2 (A.26)

The solution to this is similar to that given in Gramfort, Kowalski and Hämäläinen (2012), who
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solve it for a model using only the L1,2 norm. That is, for each i, j 6= i, define rij = |Γ(i,j)| − λ1,1.

Reorder these, defining an index (k) such that ri(k) ≥ ri(k+1) for all k. Next, define

Ri(l) = |Γ(i,(l))| − λ1,1 −
λ1,2

1 + λ1,2

(l)

∑
(k)=1

(|Γ(i,(k))| − λ1,1) (A.27)

Clearly Ri(l) is decreasing with (l). Define(l∗) = max(l) |Ri(l) > 0. This implies that

prox(Γ̃(z)
(i,j)) = 1{(k) ≤ (l∗)} sign(Γ̃(z)

(i,j))

(
|Γ(i,(l))| − λ1,1 −

λ1,2
1 + λ1,2

(l∗)

∑
(k)=1

(|Γ(i,(k))| − λ1,1)

)
(A.28)

which defines Γ̂(i). That is, Γ̂(z)
(i,j) = 0 for all entries other than the largest (l∗), where (l∗) is defined

as above.
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C Supplemental Tables and Figures
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TABLE A.1
PERFORMANCE METRICS FOR SINGLE VILLAGE

( T = 1000)

λ1,1 λ1,2
×10−6 0 0.1 1 10 100 1000 10000
Panel A: Network Density
0.000 1.0000 0.9721 0.7814 0.2974 0.0554 0.0186 0.0070
0.010 0.9412 0.9142 0.7396 0.2861 0.0540 0.0182 0.0071
0.025 0.8743 0.8487 0.6951 0.2745 0.0527 0.0176 0.0071
0.050 0.7943 0.7744 0.6414 0.2612 0.0508 0.0170 0.0071
0.075 0.7342 0.7165 0.5998 0.2503 0.0494 0.0168 0.0072
0.100 0.6885 0.6731 0.5654 0.2418 0.0483 0.0165 0.0072
0.250 0.5209 0.5109 0.4421 0.2091 0.0445 0.0153 0.0074
0.500 0.3878 0.3813 0.3425 0.1774 0.0408 0.0129 0.0075
0.750 0.3170 0.3131 0.2823 0.1561 0.0382 0.0117 0.0075
1.000 0.2644 0.2604 0.2391 0.1408 0.0358 0.0109 0.0072

Panel B: Positive Predictive Value
0.000 0.0528 0.0529 0.0571 0.0915 0.2417 0.3884 0.5385
0.010 0.0532 0.0535 0.0583 0.0927 0.2432 0.3874 0.5313
0.025 0.0546 0.0554 0.0600 0.0957 0.2470 0.3957 0.5313
0.050 0.0568 0.0573 0.0621 0.0984 0.2513 0.4097 0.5289
0.075 0.0583 0.0593 0.0649 0.1016 0.2540 0.4121 0.5265
0.100 0.0600 0.0606 0.0669 0.1032 0.2564 0.4181 0.5307
0.250 0.0694 0.0693 0.0732 0.1129 0.2673 0.4200 0.5342
0.500 0.0783 0.0793 0.0846 0.1260 0.2749 0.4619 0.5339
0.750 0.0883 0.0889 0.0943 0.1365 0.2849 0.4676 0.5362
1.000 0.0977 0.0982 0.1042 0.1454 0.2905 0.5000 0.5310

Panel C: Negative Predictive Value
0.000 n/a 0.9488 0.9625 0.9635 0.9583 0.9536 0.9506
0.010 0.9535 0.9549 0.9627 0.9632 0.9581 0.9534 0.9506
0.025 0.9596 0.9618 0.9637 0.9634 0.9580 0.9533 0.9506
0.050 0.9627 0.9624 0.9637 0.9633 0.9578 0.9534 0.9506
0.075 0.9623 0.9636 0.9653 0.9635 0.9576 0.9533 0.9506
0.100 0.9631 0.9633 0.9655 0.9632 0.9575 0.9533 0.9507
0.250 0.9652 0.9644 0.9633 0.9631 0.9572 0.9529 0.9508
0.500 0.9633 0.9635 0.9637 0.9630 0.9566 0.9525 0.9508
0.750 0.9637 0.9636 0.9635 0.9627 0.9564 0.9521 0.9508
1.000 0.9633 0.9632 0.9633 0.9624 0.9560 0.9521 0.9506

Notes: β = 0.25. Village 58, network of All Relationships. See Table
1 for N and density. T = 1, 000, ση = 1 in all simulations. R = 1 in
estimation.
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TABLE A.2
PERFORMANCE METRICS FOR SINGLE VILLAGE

(T = 100)

λ1,1 λ1,2
×10−6 0 0.1 1 10 100 1000 10000
Panel A: Network Density
0.000 1.0000 0.9999 0.9997 0.9993 0.9892 0.9047 0.4668
0.010 0.6707 0.6707 0.6706 0.6697 0.6648 0.5821 0.2381
0.025 0.5432 0.5329 0.4633 0.4347 0.4280 0.3638 0.1358
0.050 0.4488 0.4426 0.3899 0.2649 0.2545 0.2090 0.0594
0.075 0.3946 0.3896 0.3483 0.1882 0.1696 0.1339 0.0246
0.100 0.3584 0.3538 0.3198 0.1743 0.1192 0.0869 0.0112
0.250 0.2551 0.2522 0.2325 0.1404 0.0451 0.0191 0.0070
0.500 0.1876 0.1866 0.1764 0.1153 0.0350 0.0138 0.0069
0.750 0.1568 0.1560 0.1480 0.1013 0.0327 0.0125 0.0069
1.000 0.1342 0.1336 0.1275 0.0905 0.0307 0.0121 0.0069

Panel B: Positive Predictive Value
0.000 0.0528 0.0528 0.0528 0.0529 0.0530 0.0533 0.0570
0.010 0.0546 0.0546 0.0546 0.0546 0.0547 0.0557 0.0621
0.025 0.0557 0.0561 0.0566 0.0582 0.0582 0.0594 0.0687
0.050 0.0576 0.0578 0.0590 0.0615 0.0612 0.0639 0.0807
0.075 0.0584 0.0583 0.0591 0.0654 0.0676 0.0690 0.0966
0.100 0.0593 0.0593 0.0598 0.0666 0.0692 0.0741 0.1190
0.250 0.0623 0.0623 0.0629 0.0694 0.0809 0.0965 0.1416
0.500 0.0655 0.0651 0.0667 0.0697 0.0789 0.1080 0.1422
0.750 0.0690 0.0692 0.0701 0.0712 0.0835 0.1142 0.1422
1.000 0.0717 0.0715 0.0709 0.0729 0.0878 0.1155 0.1422

Panel C: Negative Predictive Value
0.000 n/a 1.0000 1.0000 1.0000 0.9618 0.9520 0.9509
0.010 0.9508 0.9508 0.9509 0.9508 0.9509 0.9512 0.9501
0.025 0.9507 0.9509 0.9504 0.9513 0.9512 0.9510 0.9497
0.050 0.9511 0.9511 0.9511 0.9503 0.9501 0.9501 0.9489
0.075 0.9508 0.9507 0.9506 0.9501 0.9502 0.9497 0.9483
0.100 0.9508 0.9507 0.9505 0.9501 0.9494 0.9492 0.9479
0.250 0.9504 0.9504 0.9502 0.9499 0.9485 0.9480 0.9478
0.500 0.9501 0.9500 0.9502 0.9494 0.9481 0.9480 0.9478
0.750 0.9502 0.9502 0.9502 0.9493 0.9482 0.9480 0.9478
1.000 0.9501 0.9501 0.9498 0.9492 0.9483 0.9480 0.9478

Notes: β = 0.25. Village 58, network of All Relationships. See Table
1 for N and density. T = 100, ση = 1 in all simulations. R = 1 in
estimation.
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TABLE A.3
PERFORMANCE METRICS FOR SINGLE VILLAGE

(T = 10)

λ1,1 λ1,2
×10−6 0 0.1 1 10 100 1000 10000
Panel A: Network Density
0.000 1.0000 0.9999 0.9999 0.9987 0.9885 0.9077 0.5826
0.010 0.2675 0.2675 0.2674 0.2670 0.2665 0.2705 0.2503
0.025 0.2096 0.2096 0.2095 0.2089 0.2097 0.2132 0.2066
0.050 0.1718 0.1718 0.1718 0.1714 0.1723 0.1780 0.1559
0.075 0.1558 0.1558 0.1558 0.1556 0.1562 0.1598 0.1175
0.100 0.1421 0.1413 0.1377 0.1374 0.1371 0.1354 0.0898
0.250 0.1118 0.1112 0.1061 0.0740 0.0571 0.0551 0.0292
0.500 0.0926 0.0919 0.0875 0.0634 0.0245 0.0217 0.0113
0.750 0.0838 0.0833 0.0791 0.0578 0.0234 0.0136 0.0068
1.000 0.0777 0.0772 0.0732 0.0539 0.0226 0.0111 0.0065

Panel B: Positive Predictive Value
0.000 0.0528 0.0528 0.0528 0.0529 0.0529 0.0534 0.0549
0.010 0.0572 0.0572 0.0572 0.0572 0.0572 0.0567 0.0567
0.025 0.0557 0.0557 0.0557 0.0559 0.0557 0.0563 0.0567
0.050 0.0558 0.0558 0.0558 0.0559 0.0556 0.0562 0.0564
0.075 0.0562 0.0562 0.0562 0.0563 0.0565 0.0568 0.0564
0.100 0.0581 0.0577 0.0576 0.0578 0.0577 0.0565 0.0569
0.250 0.0579 0.0576 0.0568 0.0557 0.0528 0.0542 0.0686
0.500 0.0569 0.0573 0.0581 0.0561 0.0647 0.0556 0.0560
0.750 0.0568 0.0571 0.0574 0.0532 0.0624 0.0678 0.0421
1.000 0.0564 0.0567 0.0555 0.0536 0.0619 0.0630 0.0437

Panel C: Negative Predictive Value
0.000 0.5000 1.0000 1.0000 0.9756 0.9529 0.9526 0.9500
0.010 0.9488 0.9488 0.9488 0.9488 0.9488 0.9486 0.9485
0.025 0.9480 0.9480 0.9480 0.9480 0.9479 0.9481 0.9482
0.050 0.9478 0.9478 0.9478 0.9478 0.9478 0.9479 0.9478
0.075 0.9478 0.9478 0.9478 0.9478 0.9479 0.9479 0.9477
0.100 0.9481 0.9480 0.9480 0.9480 0.9480 0.9478 0.9476
0.250 0.9478 0.9478 0.9477 0.9474 0.9472 0.9473 0.9477
0.500 0.9476 0.9476 0.9477 0.9474 0.9475 0.9472 0.9472
0.750 0.9476 0.9476 0.9476 0.9472 0.9474 0.9474 0.9471
1.000 0.9475 0.9475 0.9474 0.9472 0.9474 0.9473 0.9471

Notes: β = 0.25. Village 58, network of All Relationships. See Table
1 for N and density. T = 10, ση = 1 in all simulations. R = 1 in
estimation.
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TABLE A.4
PERFORMANCE METRICS FOR TWO-VILLAGE RESULTS

(T = 1000, UNRESTRICTED)

λ1,1 λ1,2
×10−6 0 0.1 1 10 100 1000 10000
Panel A: Network Density
0.000 1.0000 0.9454 0.6554 0.1922 0.0545 0.0169 0.0069
0.010 0.9258 0.8770 0.6193 0.1845 0.0472 0.0165 0.0069
0.025 0.8433 0.8027 0.5782 0.1762 0.0396 0.0160 0.0070
0.050 0.7536 0.7178 0.5270 0.1661 0.0329 0.0158 0.0071
0.075 0.6889 0.6583 0.4898 0.1589 0.0298 0.0156 0.0071
0.100 0.6363 0.6098 0.4599 0.1524 0.0291 0.0155 0.0071
0.250 0.4513 0.4361 0.3502 0.1301 0.0265 0.0149 0.0072
0.500 0.3084 0.3002 0.2526 0.1072 0.0241 0.0134 0.0072
0.750 0.2246 0.2201 0.1911 0.0919 0.0223 0.0120 0.0072
1.000 0.1712 0.1681 0.1491 0.0797 0.0208 0.0112 0.0070

Panel B: Positive Predictive Value (within Village)
0.000 0.0499 0.0518 0.0632 0.1357 0.2721 0.4745 0.6584
0.010 0.0525 0.0542 0.0646 0.1391 0.2928 0.4739 0.6584
0.025 0.0555 0.0570 0.0674 0.1425 0.3249 0.4807 0.6601
0.050 0.0589 0.0604 0.0714 0.1475 0.3490 0.4858 0.6585
0.075 0.0616 0.0630 0.0749 0.1514 0.3622 0.4912 0.6585
0.100 0.0642 0.0656 0.0771 0.1550 0.3660 0.4922 0.6522
0.250 0.0781 0.0795 0.0912 0.1710 0.3839 0.5035 0.6555
0.500 0.0985 0.1007 0.1140 0.1909 0.4094 0.5359 0.6524
0.750 0.1231 0.1249 0.1347 0.2073 0.4268 0.5686 0.6538
1.000 0.1459 0.1484 0.1585 0.2179 0.4470 0.5902 0.6650

Panel C: Negative Predictive Value (within Village)
0.000 n/a 0.9830 0.9752 0.9704 0.9629 0.9573 0.9543
0.010 0.9814 0.9804 0.9739 0.9702 0.9621 0.9572 0.9543
0.025 0.9798 0.9786 0.9740 0.9699 0.9614 0.9571 0.9543
0.050 0.9775 0.9766 0.9740 0.9695 0.9602 0.9570 0.9544
0.075 0.9758 0.9752 0.9740 0.9692 0.9596 0.9571 0.9544
0.100 0.9749 0.9744 0.9732 0.9690 0.9595 0.9570 0.9544
0.250 0.9732 0.9729 0.9723 0.9682 0.9592 0.9569 0.9544
0.500 0.9717 0.9718 0.9717 0.9670 0.9589 0.9567 0.9544
0.750 0.9713 0.9712 0.9701 0.9660 0.9587 0.9564 0.9544
1.000 0.9699 0.9699 0.9691 0.9646 0.9585 0.9562 0.9544

Panel D: Percent of Across-Village Links Detected (within Village)
0.000 1.0000 0.9456 0.6591 0.1808 0.0447 0.0095 0.0025
0.010 0.9285 0.8792 0.6221 0.1732 0.0376 0.0090 0.0025
0.025 0.8457 0.8033 0.5794 0.1647 0.0300 0.0086 0.0025
0.050 0.7537 0.7213 0.5242 0.1540 0.0243 0.0082 0.0025
0.075 0.6916 0.6613 0.4851 0.1468 0.0213 0.0080 0.0025
0.100 0.6388 0.6114 0.4541 0.1402 0.0207 0.0080 0.0026
0.250 0.4460 0.4307 0.3450 0.1179 0.0182 0.0074 0.0026
0.500 0.3002 0.2912 0.2426 0.0948 0.0153 0.0061 0.0027
0.750 0.2166 0.2121 0.1811 0.0797 0.0140 0.0055 0.0026
1.000 0.1603 0.1565 0.1368 0.0684 0.0126 0.0047 0.0025

Notes: β = 0.25. Villages 8 and 10, network of All Relationships.
See Table 1 for N and density. T = 1, 000, ση = 1 in all simulations.
R = 1 in estimation.
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TABLE A.5
PERFORMANCE METRICS FOR TWO-VILLAGE RESULTS

(T = 1000, RESTRICTED TO ONLY WITHIN-VILLAGE LINKS ONLY)

λ1,1 λ1,2
×10−7 0 1 10 100 1000 10000 100000
Panel A: Network Density
0.000 1.0000 0.9715 0.7785 0.2949 0.0547 0.0236 0.0133
0.010 0.9614 0.9295 0.7514 0.2888 0.0541 0.0238 0.0133
0.025 0.9072 0.8800 0.7162 0.2801 0.0532 0.0238 0.0133
0.050 0.8381 0.8147 0.6687 0.2675 0.0519 0.0236 0.0134
0.075 0.7811 0.7612 0.6302 0.2568 0.0508 0.0236 0.0134
0.100 0.7387 0.7158 0.5985 0.2478 0.0498 0.0234 0.0134
0.250 0.5510 0.5392 0.4664 0.2108 0.0464 0.0204 0.0134
0.500 0.3870 0.3803 0.3373 0.1716 0.0426 0.0164 0.0123
0.750 0.2901 0.2861 0.2602 0.1449 0.0393 0.0145 0.0122
1.000 0.2207 0.2179 0.2011 0.1216 0.0363 0.0143 0.0121

Panel B: Positive Predictive Value (within Village)
0.000 0.0995 0.1014 0.1151 0.2012 0.4887 0.6464 0.7371
0.010 0.1020 0.1041 0.1175 0.2036 0.4880 0.6427 0.7371
0.025 0.1057 0.1080 0.1206 0.2067 0.4942 0.6427 0.7371
0.050 0.1109 0.1124 0.1247 0.2129 0.4947 0.6464 0.7333
0.075 0.1147 0.1169 0.1288 0.2199 0.4987 0.6483 0.7333
0.100 0.1185 0.1209 0.1320 0.2253 0.5062 0.6540 0.7333
0.250 0.1393 0.1411 0.1518 0.2499 0.5229 0.6879 0.7333
0.500 0.1698 0.1714 0.1861 0.2838 0.5434 0.7250 0.7598
0.750 0.2043 0.2071 0.2214 0.3092 0.5592 0.7406 0.7640
1.000 0.2465 0.2478 0.2559 0.3403 0.5755 0.7368 0.7627

Panel C: Negative Predictive Value (within Village)
0.000 n/a 0.9639 0.9554 0.9431 0.9230 0.9137 0.9091
0.010 0.9627 0.9611 0.9551 0.9428 0.9227 0.9137 0.9091
0.025 0.9609 0.9629 0.9536 0.9422 0.9227 0.9137 0.9091
0.050 0.9594 0.9571 0.9514 0.9419 0.9222 0.9137 0.9091
0.075 0.9549 0.9561 0.9505 0.9421 0.9219 0.9138 0.9091
0.100 0.9541 0.9544 0.9490 0.9420 0.9218 0.9138 0.9091
0.250 0.9493 0.9491 0.9462 0.9407 0.9211 0.9128 0.9091
0.500 0.9449 0.9446 0.9446 0.9387 0.9203 0.9110 0.9087
0.750 0.9433 0.9437 0.9434 0.9361 0.9193 0.9100 0.9087
1.000 0.9421 0.9418 0.9399 0.9338 0.9184 0.9098 0.9086

Notes: β = 0.25. Villages 8 and 10, network of All Relationships.
See Table 1 for N and density. T = 1, 000, ση = 1 in all simulations.
R = 1 in estimation.
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TABLE A.6
PERFORMANCE METRICS FOR TWO-VILLAGE RESULTS

(T = 1000, ESTIMATED SEPARATELY)

λ1,1 λ1,2
×10−4 0 0.001 0.01 0.1 1 10 100
Panel A: Network Density
0.000 1.0000 0.9962 0.8554 0.4019 0.0850 0.0214 0.0137
0.010 0.8812 0.8685 0.7548 0.3951 0.0902 0.0223 0.0138
0.025 0.7569 0.7474 0.6720 0.3863 0.0982 0.0234 0.0140
0.050 0.6257 0.6203 0.5746 0.3682 0.1053 0.0250 0.0146
0.075 0.5365 0.5328 0.5049 0.3482 0.1100 0.0260 0.0149
0.100 0.4705 0.4684 0.4473 0.3284 0.1122 0.0269 0.0151
0.250 0.2801 0.2799 0.2746 0.2359 0.1118 0.0299 0.0160
0.500 0.1590 0.1588 0.1581 0.1474 0.0937 0.0316 0.0162
0.750 0.1096 0.1095 0.1091 0.1048 0.0753 0.0312 0.0162
1.000 0.0771 0.0771 0.0767 0.0757 0.0621 0.0298 0.0158

Panel B: Positive Predictive Value (within Village)
0.000 0.0995 0.0994 0.1025 0.1350 0.2643 0.4249 0.5150
0.010 0.1025 0.1029 0.1057 0.1354 0.2604 0.4215 0.5149
0.025 0.1037 0.1042 0.1084 0.1345 0.2477 0.4106 0.5147
0.050 0.1101 0.1105 0.1155 0.1362 0.2407 0.4082 0.5023
0.075 0.1167 0.1173 0.1197 0.1411 0.2393 0.4000 0.4931
0.100 0.1232 0.1236 0.1262 0.1448 0.2357 0.3929 0.4909
0.250 0.1531 0.1532 0.1542 0.1664 0.2377 0.3799 0.4850
0.500 0.1897 0.1898 0.1903 0.1990 0.2392 0.3731 0.4768
0.750 0.2145 0.2146 0.2148 0.2217 0.2493 0.3714 0.4746
1.000 0.2400 0.2400 0.2402 0.2462 0.2657 0.3770 0.4826

Panel C: Negative Predictive Value (within Village)
0.000 n/a 0.8750 0.9185 0.9244 0.9158 0.9076 0.9063
0.010 0.9227 0.9229 0.9195 0.9240 0.9165 0.9078 0.9063
0.025 0.9138 0.9145 0.9187 0.9225 0.9166 0.9079 0.9064
0.050 0.9182 0.9184 0.9222 0.9219 0.9171 0.9084 0.9065
0.075 0.9205 0.9208 0.9211 0.9227 0.9178 0.9085 0.9064
0.100 0.9216 0.9218 0.9221 0.9227 0.9177 0.9086 0.9065
0.250 0.9214 0.9214 0.9212 0.9212 0.9179 0.9092 0.9068
0.500 0.9175 0.9176 0.9176 0.9177 0.9149 0.9094 0.9067
0.750 0.9147 0.9147 0.9146 0.9148 0.9127 0.9093 0.9067
1.000 0.9122 0.9122 0.9122 0.9125 0.9115 0.9090 0.9066

Notes: β = 0.25. Villages 8 and 10, network of All Relationships.
See Table 1 for N and density. T = 1, 000, ση = 1 in all simulations.
R = 1 in estimation.
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TABLE A.7
PERFORMANCE METRICS FOR SINGLE VILLAGE

(R = 1, MOST DENSE VILLAGE)

λ1,1 λ1,2
×10−9 0 0.01 0.1 1 10 100 1000
Panel A: Network Density

0 1.0000 1.0000 0.9981 0.9305 0.2182 0.0367 0.0193
10 1.0000 0.9998 0.9945 0.9243 0.2235 0.0374 0.0197
25 0.9935 0.9932 0.9874 0.9055 0.2259 0.0381 0.0198
50 0.9839 0.9831 0.9735 0.8354 0.2262 0.0379 0.0198
75 0.9663 0.9646 0.9578 0.6941 0.2244 0.0386 0.0200
100 0.9554 0.9552 0.9381 0.5800 0.2172 0.0384 0.0198
250 0.4557 0.4622 0.4708 0.3288 0.1668 0.0367 0.0200
500 0.1271 0.1270 0.1251 0.1160 0.0639 0.0316 0.0174
750 0.0472 0.0472 0.0468 0.0453 0.0407 0.0253 0.0167

1000 0.0371 0.0371 0.0371 0.0366 0.0320 0.0215 0.0156
Panel B: Positive Predictive Value

0 0.1141 0.1141 0.1125 0.0725 0.2670 0.8465 0.8938
10 0.1141 0.1140 0.1093 0.0727 0.2622 0.8493 0.8957
25 0.1084 0.1081 0.1028 0.0728 0.2587 0.8520 0.8966
50 0.0997 0.0989 0.0900 0.0775 0.2583 0.8559 0.8966
75 0.0833 0.0820 0.0776 0.0876 0.2605 0.8584 0.8974
100 0.0744 0.0748 0.0729 0.0969 0.2659 0.8622 0.9138
250 0.1256 0.1272 0.1278 0.1554 0.3156 0.8977 0.9231
500 0.4274 0.4280 0.4358 0.4654 0.7620 0.9676 0.9804
750 0.9746 0.9746 0.9781 0.9849 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Panel C: Negative Predictive Value

0 0.5000 0.5000 0.0000 0.3292 0.9285 0.9138 0.9012
10 0.5000 0.0000 0.0000 0.3792 0.9285 0.9144 0.9015
25 0.0000 0.0000 0.0000 0.4901 0.9280 0.9151 0.9017
50 0.0000 0.0000 0.0000 0.6999 0.9280 0.9151 0.9017
75 0.0000 0.0097 0.0567 0.8257 0.9282 0.9157 0.9018
100 0.0345 0.0458 0.2597 0.8621 0.9280 0.9158 0.9020
250 0.8954 0.8970 0.8980 0.9061 0.9262 0.9157 0.9024
500 0.9315 0.9315 0.9318 0.9320 0.9301 0.9137 0.9012
750 0.9284 0.9284 0.9283 0.9272 0.9234 0.9088 0.9009

1000 0.9200 0.9200 0.9200 0.9195 0.9151 0.9053 0.8998

Notes: β = 0.25. Village 10, network of All Relationships. See Table
1 forN and density. T = 1, 000, 000, ση = 1 in all simulations. R = 1
in estimation.
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TABLE A.8
PERFORMANCE METRICS FOR SINGLE VILLAGE

(R = 1, LEAST DENSE VILLAGE 1)

λ1,1 λ1,2
×10−9 0 0.01 0.1 1 10 100 1000
Panel A: Network Density

0 1.0000 1.0000 0.9999 0.9996 0.9962 0.9634 0.5119
10 0.9419 0.9419 0.9418 0.9411 0.9336 0.8451 0.2811
25 0.7951 0.7950 0.7948 0.7922 0.7702 0.5523 0.0768
50 0.3331 0.3330 0.3328 0.3306 0.3070 0.1523 0.0206
75 0.0554 0.0554 0.0554 0.0550 0.0510 0.0288 0.0141
100 0.0186 0.0186 0.0186 0.0186 0.0182 0.0155 0.0119
250 0.0086 0.0086 0.0086 0.0086 0.0086 0.0085 0.0078
500 0.0066 0.0066 0.0066 0.0066 0.0065 0.0065 0.0062
750 0.0059 0.0059 0.0059 0.0059 0.0059 0.0059 0.0055

1000 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0047
Panel B: Positive Predictive Value

0 0.0062 0.0062 0.0062 0.0062 0.0063 0.0065 0.0122
10 0.0066 0.0066 0.0066 0.0066 0.0067 0.0074 0.0222
25 0.0078 0.0078 0.0078 0.0079 0.0081 0.0113 0.0812
50 0.0187 0.0187 0.0187 0.0189 0.0203 0.0410 0.3027
75 0.1125 0.1126 0.1126 0.1134 0.1223 0.2163 0.4416
100 0.3346 0.3346 0.3346 0.3361 0.3435 0.4033 0.5217
250 0.7260 0.7260 0.7260 0.7260 0.7257 0.7323 0.7831
500 0.9140 0.9140 0.9140 0.9140 0.9137 0.9170 0.9209
750 0.9484 0.9484 0.9484 0.9484 0.9484 0.9520 0.9618

1000 0.9858 0.9858 0.9858 0.9858 0.9858 0.9857 0.9851
Panel C: Negative Predictive Value

0 n/a n/a 1.0000 1.0000 1.0000 1.0000 1.0000
10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
25 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
75 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
250 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999
500 0.9998 0.9998 0.9998 0.9998 0.9997 0.9997 0.9995
750 0.9994 0.9994 0.9994 0.9994 0.9994 0.9994 0.9991

1000 0.9987 0.9987 0.9987 0.9987 0.9987 0.9986 0.9984

Notes: β = 0.25. Village 3, network of Give Advice / Help Deci-
sion. See Table 1 for N and density. T = 1, 000, 000, ση = 1 in all
simulations. R = 1 in estimation.
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TABLE A.9
PERFORMANCE METRICS FOR SINGLE VILLAGE

(R = 1, LARGEST VILLAGE)

λ1,1 λ1,2
×10−8 0 10 100 1000 10000 100000 1000000
Panel A: Network Density
0.000 1.0000 1.0000 1.0000 0.9993 0.9950 0.9568 0.4159
0.010 0.9917 0.9917 0.9917 0.9911 0.9868 0.9400 0.3416
0.025 0.9794 0.9794 0.9794 0.9789 0.9732 0.9060 0.2469
0.050 0.9521 0.9521 0.9520 0.9511 0.9423 0.8151 0.1376
0.075 0.9118 0.9117 0.9115 0.9098 0.8926 0.6805 0.0805
0.100 0.8436 0.8435 0.8432 0.8440 0.8145 0.5218 0.0533
0.250 0.1112 0.1112 0.1111 0.1100 0.1001 0.0560 0.0256
0.500 0.0247 0.0247 0.0247 0.0247 0.0247 0.0244 0.0222
0.750 0.0225 0.0225 0.0225 0.0225 0.0225 0.0222 0.0197
1.000 0.0206 0.0206 0.0206 0.0206 0.0206 0.0203 0.0174

Panel B: Positive Predictive Value
0.000 0.0225 0.0225 0.0225 0.0225 0.0226 0.0235 0.0538
0.010 0.0227 0.0227 0.0227 0.0227 0.0228 0.0239 0.0654
0.025 0.0229 0.0229 0.0229 0.0230 0.0231 0.0248 0.0905
0.050 0.0236 0.0236 0.0236 0.0236 0.0238 0.0276 0.1621
0.075 0.0246 0.0246 0.0247 0.0247 0.0252 0.0330 0.2769
0.100 0.0266 0.0266 0.0267 0.0266 0.0276 0.0430 0.4173
0.250 0.2016 0.2016 0.2018 0.2038 0.2239 0.3999 0.8571
0.500 0.8999 0.8999 0.8999 0.8999 0.8999 0.9047 0.9400
0.750 0.9507 0.9507 0.9507 0.9507 0.9507 0.9523 0.9643
1.000 0.9693 0.9693 0.9693 0.9693 0.9692 0.9689 0.9726

Panel C: Negative Predictive Value
0.000 n/a n/a 1.0000 1.0000 1.0000 1.0000 0.9998
0.010 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
0.025 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
0.050 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
0.075 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
0.100 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998
0.250 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9994
0.500 0.9997 0.9997 0.9997 0.9997 0.9997 0.9996 0.9983
0.750 0.9989 0.9989 0.9989 0.9989 0.9989 0.9987 0.9965
1.000 0.9974 0.9974 0.9974 0.9974 0.9974 0.9972 0.9943

Notes: β = 0.25. Village 60, network of All Relationships . See Table
1 for N and density. T = 1, 000, 000, ση = 1 in all simulations. R = 1
in estimation.
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TABLE A.10
PERFORMANCE METRICS FOR THREE-VILLAGE RESULTS

(UNRESTRICTED)

λ1,1 λ1,2
×10−7 0 1 10 100 1000 10000 100000
Panel A: Network Density
0.000 1.0000 0.9953 0.9701 0.8280 0.0883 0.0351 0.0136
0.010 0.9893 0.9836 0.9577 0.7341 0.0582 0.0328 0.0127
0.025 0.9722 0.9670 0.9377 0.5945 0.0476 0.0295 0.0119
0.050 0.9409 0.9344 0.8919 0.3673 0.0420 0.0252 0.0108
0.075 0.8952 0.8869 0.8188 0.2125 0.0392 0.0230 0.0102
0.100 0.8233 0.8100 0.6999 0.1167 0.0370 0.0218 0.0093
0.250 0.0682 0.0656 0.0496 0.0372 0.0307 0.0178 0.0074
0.500 0.0354 0.0354 0.0352 0.0336 0.0262 0.0148 0.0060
0.750 0.0316 0.0316 0.0315 0.0299 0.0223 0.0130 0.0055
1.000 0.0263 0.0263 0.0261 0.0245 0.0190 0.0116 0.0052

Panel B: Positive Predictive Value (within Village)
0.000 0.0352 0.0353 0.0362 0.0425 0.3949 0.8568 0.9495
0.010 0.0355 0.0358 0.0367 0.0479 0.5970 0.8749 0.9598
0.025 0.0362 0.0364 0.0375 0.0591 0.7279 0.8961 0.9664
0.050 0.0374 0.0376 0.0394 0.0956 0.8147 0.9264 0.9693
0.075 0.0393 0.0396 0.0429 0.1651 0.8608 0.9456 0.9757
0.100 0.0427 0.0434 0.0502 0.3003 0.8958 0.9571 0.9807
0.250 0.5153 0.5356 0.7071 0.9352 0.9865 0.9977 0.9981
0.500 0.9728 0.9731 0.9734 0.9861 0.9905 1.0000 1.0000
0.750 0.9887 0.9887 0.9886 0.9890 0.9951 1.0000 1.0000
1.000 0.9906 0.9906 0.9905 0.9899 0.9971 1.0000 1.0000

Panel C: Negative Predictive Value (within Village)
0.000 n/a 1.0000 1.0000 1.0000 0.9997 0.9947 0.9775
0.010 1.0000 1.0000 1.0000 1.0000 0.9996 0.9933 0.9767
0.025 1.0000 1.0000 1.0000 1.0000 0.9994 0.9910 0.9760
0.050 1.0000 1.0000 1.0000 0.9999 0.9990 0.9879 0.9750
0.075 1.0000 1.0000 1.0000 0.9999 0.9985 0.9863 0.9745
0.100 1.0000 1.0000 1.0000 0.9999 0.9979 0.9854 0.9737
0.250 1.0000 1.0000 0.9999 0.9996 0.9950 0.9823 0.9720
0.500 0.9992 0.9992 0.9991 0.9979 0.9905 0.9794 0.9707
0.750 0.9960 0.9960 0.9958 0.9943 0.9868 0.9775 0.9702
1.000 0.9906 0.9906 0.9905 0.9888 0.9835 0.9761 0.9698

Panel D: Percent of Across-Village Links Detected (within Village)
0.000 1.0000 1.0000 0.9991 0.9443 0.0651 0.0045 0.0005
0.010 0.9997 0.9994 0.9980 0.8620 0.0243 0.0036 0.0004
0.025 0.9986 0.9984 0.9942 0.7117 0.0114 0.0028 0.0003
0.050 0.9924 0.9914 0.9776 0.4358 0.0059 0.0017 0.0003
0.075 0.9739 0.9710 0.9329 0.2356 0.0039 0.0010 0.0002
0.100 0.9305 0.9205 0.8245 0.1072 0.0026 0.0007 0.0002
0.250 0.0434 0.0397 0.0170 0.0008 0.0000 0.0000 0.0000
0.500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.750 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: β = 0.25. Villages 8, 10, and 54, network of All Relation-
ships. See Table 1 for N and density. T = 1, 000, 000, ση = 1 in all
simulations. R = 1 in estimation.
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TABLE A.11
PERFORMANCE METRICS FOR THREE-VILLAGE RESULTS

(RESTRICTED TO ONLY WITHIN-VILLAGE LINKS ONLY)

λ1,1 λ1,2
×10−7 0 1 10 100 1000 10000 100000
Panel A: Network Density
0.000 1.0000 0.9880 0.8814 0.1354 0.0625 0.0270 0.0131
0.010 0.9716 0.9590 0.8533 0.1327 0.0622 0.0270 0.0131
0.025 0.9260 0.9136 0.8084 0.1291 0.0613 0.0269 0.0131
0.050 0.8500 0.8368 0.7119 0.1239 0.0600 0.0263 0.0130
0.075 0.7539 0.7397 0.5844 0.1196 0.0590 0.0261 0.0130
0.100 0.6195 0.6006 0.4295 0.1149 0.0576 0.0260 0.0129
0.250 0.1173 0.1169 0.1136 0.1038 0.0523 0.0241 0.0124
0.500 0.1057 0.1057 0.1047 0.0935 0.0482 0.0227 0.0123
0.750 0.0945 0.0945 0.0933 0.0811 0.0444 0.0214 0.0120
1.000 0.0783 0.0782 0.0768 0.0663 0.0408 0.0203 0.0120

Panel B: Positive Predictive Value (within Village)
0.000 0.1051 0.1064 0.1193 0.7671 0.9322 0.9604 0.9718
0.010 0.1082 0.1096 0.1232 0.7814 0.9364 0.9603 0.9718
0.025 0.1135 0.1151 0.1300 0.8024 0.9422 0.9602 0.9717
0.050 0.1237 0.1256 0.1477 0.8353 0.9526 0.9672 0.9748
0.075 0.1394 0.1421 0.1799 0.8630 0.9567 0.9732 0.9778
0.100 0.1697 0.1750 0.2447 0.8968 0.9664 0.9746 0.9776
0.250 0.8954 0.8989 0.9228 0.9691 1.0000 1.0000 1.0000
0.500 0.9735 0.9735 0.9752 0.9886 1.0000 1.0000 1.0000
0.750 0.9887 0.9887 0.9885 0.9909 1.0000 1.0000 1.0000
1.000 0.9905 0.9905 0.9904 0.9938 1.0000 1.0000 1.0000

Panel C: Negative Predictive Value (within Village)
0.000 n/a 1.0000 1.0000 0.9985 0.9500 0.9187 0.9064
0.010 1.0000 1.0000 1.0000 0.9984 0.9500 0.9186 0.9064
0.025 1.0000 1.0000 1.0000 0.9983 0.9495 0.9185 0.9064
0.050 1.0000 1.0000 1.0000 0.9982 0.9489 0.9182 0.9064
0.075 1.0000 1.0000 1.0000 0.9978 0.9483 0.9182 0.9063
0.100 1.0000 1.0000 1.0000 0.9976 0.9475 0.9181 0.9063
0.250 0.9999 0.9999 0.9996 0.9950 0.9442 0.9170 0.9061
0.500 0.9975 0.9975 0.9967 0.9860 0.9402 0.9156 0.9060
0.750 0.9871 0.9870 0.9858 0.9730 0.9364 0.9144 0.9058
1.000 0.9701 0.9700 0.9685 0.9580 0.9329 0.9135 0.9057

Notes: β = 0.25. Villages 8, 10, and 54, network of All Relation-
ships. See Table 1 for N and density. T = 1, 000, 000, ση = 1 in all
simulations. R = 1 in estimation.
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TABLE A.12
PERFORMANCE METRICS FOR THREE-VILLAGE RESULTS

(VILLAGES ESTIMATED SEPARATELY)

λ1,1 λ1,2
×10−4 0 0.001 0.01 0.1 1 10 100
Panel A: Network Density

0 1.0000 1.0000 0.9953 0.8912 0.1297 0.0272 0.0148
10 0.9523 0.9514 0.9200 0.6771 0.1296 0.0289 0.0154
25 0.6911 0.6905 0.6792 0.4895 0.1041 0.0283 0.0151
50 0.5407 0.5378 0.5120 0.3321 0.0877 0.0262 0.0149
75 0.3800 0.3783 0.3621 0.2347 0.0824 0.0245 0.0143
100 0.2872 0.2867 0.2785 0.1781 0.0772 0.0230 0.0137
250 0.1273 0.1289 0.1309 0.0963 0.0542 0.0176 0.0112
500 0.0386 0.0386 0.0381 0.0359 0.0223 0.0128 0.0087
750 0.0152 0.0152 0.0151 0.0147 0.0134 0.0090 0.0066

1000 0.0116 0.0116 0.0116 0.0115 0.0102 0.0074 0.0057
Panel B: Positive Predictive Value (within Village)

0 0.1051 0.1051 0.1009 0.0806 0.4279 0.9092 0.9415
10 0.0897 0.0895 0.0893 0.0981 0.4260 0.9161 0.9439
25 0.1151 0.1150 0.1138 0.1361 0.5014 0.9374 0.9538
50 0.1241 0.1244 0.1257 0.1731 0.5230 0.9465 0.9612
75 0.1488 0.1485 0.1515 0.2130 0.5082 0.9430 0.9597
100 0.1726 0.1730 0.1745 0.2500 0.5011 0.9411 0.9639
250 0.2460 0.2459 0.2446 0.3056 0.4932 0.9485 0.9670
500 0.5463 0.5469 0.5540 0.5837 0.8358 0.9806 0.9905
750 0.9810 0.9810 0.9837 0.9888 1.0000 1.0000 1.0000

1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Panel C: Negative Predictive Value (within Village)

0 n/a n/a 0.0000 0.6944 0.9430 0.9174 0.9074
10 0.5872 0.5898 0.7124 0.8802 0.9426 0.9190 0.9080
25 0.9171 0.9169 0.9133 0.9246 0.9409 0.9191 0.9079
50 0.9173 0.9173 0.9165 0.9287 0.9350 0.9175 0.9078
75 0.9217 0.9213 0.9212 0.9280 0.9311 0.9159 0.9073
100 0.9221 0.9222 0.9217 0.9263 0.9280 0.9146 0.9068
250 0.9154 0.9157 0.9159 0.9162 0.9171 0.9100 0.9047
500 0.9126 0.9126 0.9127 0.9127 0.9116 0.9062 0.9026
750 0.9084 0.9084 0.9084 0.9081 0.9070 0.9030 0.9008

1000 0.9054 0.9054 0.9054 0.9053 0.9041 0.9015 0.9000

Notes: β = 0.25. Villages 8, 10, and 54, network of All Relation-
ships. See Table 1 for N and density. T = 1, 000, 000, ση = 1 in all
simulations. R = 1 in estimation.
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